Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731988

ABSTRACT

Heavy metal copper (Cu) will inevitably impact the marine macroalgae Gracilariopsis lemaneiformis (G. lemaneiformis), which is a culture of economic importance along China's coastline. In this study, the detoxification mechanism of Cu stress on G. lemaneiformis was revealed by assessing physiological indicators in conjunction with transcriptome and metabolome analyses at 1 d after Cu stress. Our findings revealed that 25 µM Cu stimulated ROS synthesis and led to the enzymatic oxidation of arachidonic acid residues. This process subsequently impeded G. lemaneiformis growth by suppressing photosynthesis, nitrogen metabolism, protein synthesis, etc. The entry of Cu ions into the algae was facilitated by ZIPs and IRT transporters, presenting as Cu2+. Furthermore, there was an up-regulation of Cu efflux transporters HMA5 and ABC family transporters to achieve compartmentation to mitigate the toxicity. The results revealed that G. lemaneiformis elevated the antioxidant enzyme superoxide dismutase and ascorbate-glutathione cycle to maintain ROS homeostasis. Additionally, metabolites such as flavonoids, 3-O-methylgallic acid, 3-hydroxy-4-keto-gama-carotene, and eicosapentaenoic acid were up-regulated compared with the control, indicating that they might play roles in response to Cu stress. In summary, this study offers a comprehensive insight into the detoxification mechanisms driving the responses of G. lemaneiformis to Cu exposure.


Subject(s)
Copper , Metabolome , Transcriptome , Copper/toxicity , Copper/metabolism , Metabolome/drug effects , Seaweed/metabolism , Seaweed/genetics , Rhodophyta/metabolism , Rhodophyta/genetics , Rhodophyta/drug effects , Reactive Oxygen Species/metabolism , Gene Expression Profiling , Stress, Physiological , Oxidative Stress/drug effects , Metabolomics/methods
2.
Mar Environ Res ; 197: 106477, 2024 May.
Article in English | MEDLINE | ID: mdl-38554488

ABSTRACT

Photoperiod and temperature are two main factors in the growth of macroalgae, and changes in photoperiod and diurnal temperature difference exist in natural condition. In order to study the effects of photoperiod and diurnal temperature difference on the growth of green algae Ulva prolifera, we cultured this species under three light/dark cycles (light: dark = 10:14, 12:12 and 16:08) with constant (22 °C for light and dark period, noted as 22-22 °C) and diurnal temperature difference (22 °C and 16 °C for light and dark period, respectively, noted as 22-16 °C) conditions. The results showed that: 1) Compared with 10:14 light/dark cycle, the growth of U. prolifera under 12:12 light/dark cycle was significantly enhanced by 39% and 16% for 22-22 °C and 22-16 °C treatments, respectively, while the increase proportion decreased when the daylength increase from 12 h to 16 h. 2) The enhancement in growth induced by diurnal temperature difference was observed under 10:14 light/dark cycle, but not for 12:12 and 16:08 light/dark cycle treatments. 3) The Chl a content and photosynthetic rate increased under short light period and 22-22 °C conditions, while under 22-16 °C conditions, higher photosynthetic rate was observed under 12:12 light/dark cycle and no significant difference in Chl a content was observed. 4) Under 22-22 °C conditions, compared with 10:14 (L:D) treatment, the expression levels of proteins in light-harvesting complexes, PSII and carbon fixation were down regulated, while the photorespiration and pentose phosphate pathway (PPP) were up regulated by 16:08 light dark cycle. Then we speculate that the higher photosynthetic rate may be one compensation mechanism in short photoperiod, and under long light period condition the up regulations of photorespiration and PPP can be in charge of the decrease in enhancement growth induced by longer daylength.


Subject(s)
Edible Seaweeds , Photoperiod , Ulva , Temperature , Photosynthesis/physiology
3.
Bioresour Technol ; 393: 130150, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38049016

ABSTRACT

Astaxanthin accumulation in Haematococcus pluvialis typically occurs alongside the formation of secondary cell wall (SCW), hindering astaxanthin extraction and bio-accessibility. A potential solution lies in cultivating astaxanthin-rich motile cells lacking SCW. This study explored the influence and underlying mechanism of nitrogen-deprivation (ND) on SCW formation and established a connection between pyrimidine metabolism and SCW development. Then, various pyrimidine and ND combinations were examined to cultivate astaxanthin-rich motile cells. The results indicated that, compared to the nitrogen-replete group, the combination of uridine and ND increased the proportion of motile cells by 25-33 times, achieving 95 %, and enhanced astaxanthin yield by 26.52 %. Moreover, the efficiency of astaxanthin extraction from intact, wet motile cells was 91 % - 95 %, which was 5.6-9.0 times that from non-motile cells. This study not only presents a promising method for producing astaxanthin-rich motile cells in H. pluvialis but also provides insights into the relationship between pyrimidine metabolism and SCW development.


Subject(s)
Chlorophyceae , Chlorophyta , Chlorophyta/metabolism , Uridine/metabolism , Nitrogen/metabolism , Xanthophylls
4.
Bioresour Technol ; 389: 129802, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783237

ABSTRACT

This study explored the use of taurine in enhancing the production and bio-accessibility of astaxanthin in Haematococcus pluvialis, which typically forms a secondary cell wall hindering astaxanthin extraction. The biomass of taurine-treated group significantly increased by 18%, and astaxanthin yield surged by 34% in comparison to the control group. Without cell disruption, astaxanthin recovery from thin-walled cells in the taurine-treated group, using dimethyl sulfoxide and ethanol as extraction reagents, was 97% and 75%, respectively, which were 30-fold higher than those of thick-walled cells in the control group. Additionally, the cell fragmentation rate increased by 86% in taurine-treated group relative to the control group. Comparative transcriptome analysis identified taurine-induced upregulation of genes involved in the astaxanthin biosynthesis pathway and downregulation of those associated with secondary cell wall synthesis. This study thus offers an innovative taurine-based strategy to enhance astaxanthin production and bio-accessibility while shedding light on the mechanisms driving this process.


Subject(s)
Chlorophyceae , Chlorophyceae/metabolism , Xanthophylls/metabolism , Biomass , Gene Expression Profiling
5.
J Phycol ; 59(6): 1258-1271, 2023 12.
Article in English | MEDLINE | ID: mdl-37688517

ABSTRACT

Membrane lipids play essential roles in regulating physiological properties in higher plants and algae. Monogalactosyldiacylglycerol (MGDG) is a major thylakoid membrane lipid, and it is an important source of polyunsaturated fatty acids for cells, plays a key role in the biogenesis of plastids, and maintains the function of the photosynthetic machinery. Several studies have indicated that the knockdown of MGDG synthase results in membrane lipid remodeling, albino seedlings, and changes in photosynthetic performance. However, the effects of MGDG synthase (MGD) inhibitors on lipids in macroalgae have not yet been clarified. Here, we characterized the effects of MGD inhibitors (ortho-phenanthroline and N-ethylmaleimide) on the composition of the fatty acids observed in MGDG and digalactosyldiacylglycerol (DGDG) in Gracilariopsis lemaneiformis using electrospray ionization-mass spectrometry. The most abundant MGDG species contained 16:0/18:1 (sn-1/sn-2) fatty acids, and the most dominant DGDG species contained 20:5/16:0 (sn-1/sn-2) fatty acids. Measurements of photosynthetic pigments and photosynthetic parameters revealed that photosynthesis of G. lemaneiformis was impaired. Principal component analysis and Spearman's correlation analysis revealed interactions between specific MGDG structural composition patterns and key metabolites involved in photosynthesis, indicating that 20:4/16:0 (sn-1/sn-2) MGDG and 16:0/18:1 (sn-1/sn-2) MGDG affect the structure and function of phycobilisomes and thus the color of G. lemaneiformis. Three genes (GlMGD1, GlMGD2, and GlMGD3) were cloned and identified. The addition of N-ethylmaleimide to G. lemaneiformis did not affect the abundance of GlMGD mRNA, and the abundance of transcripts was significantly decreased by ortho-phenanthroline.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Ethylmaleimide/metabolism , Membrane Lipids/metabolism , Fatty Acids/metabolism
6.
Bioresour Technol ; 384: 129282, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37277007

ABSTRACT

Chlorophenols frequently occur alongside salinity in industrial wastewater; thus, the effects of low concentrations of salinity (NaCl, 100 mg/L) on sludge performance, microbial community, and functional genes were deeply analyzed among 4-chlorophenol (4-CP, 2.4-4.0 mg/L) wastewater treatment. The influent 4-CP was effectively degraded, but the efficiencies for PO43--P, NH4+-N, and organics reduction were slightly inhibited by NaCl stress. Long-term NaCl and 4-CP stress significantly stimulated the secretion of extracellular polymeric substances (EPS). The abundances of predominant microbes at different taxonomic levels were affected by NaCl, and the increased relative abundances of functional genes encoding proteins contributed to resist NaCl and 4-CP stress. The functional genes associated with phosphorus metabolism and nitrogen metabolism in nitrification were unaffected, but the functional genes in denitrification increased in diversity under NaCl stress in 4-CP wastewater treatment. This finding acquires useful insight into the wastewater treatment with low chlorophenols and low salinity.


Subject(s)
Chlorophenols , Microbiota , Water Purification , Waste Disposal, Fluid , Salinity , Sodium Chloride/pharmacology , Bioreactors , Sewage , Nitrification , Nitrogen , Denitrification
7.
Mar Environ Res ; 186: 105905, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36796112

ABSTRACT

Many studies have documented the responses of Ulva prolifera to environmental factors. However, the diurnal temperature differences and interactive effects of eutrophication are usually ignored. In this study, we selected U. prolifera as material to examine the effects of diurnal temperature on growth, photosynthesis and primary metabolites under two nitrogen levels. We cultured U. prolifera seedlings under two temperature conditions (22-22 °C: 22 °C during day and night; 22-18 °C: 22 °C during day and 18 °C at night) and two nitrogen levels (LN: 0.1235 mg L-1; HN: and 0.6 mg L-1). The results showed that 1) HN-grown thalli had higher growth rates, the chlorophyll a (Chl a) content, photosynthesis, superoxide dismutase (SOD) activity, soluble sugar, and protein contents under the two temperature conditions; 2) The growth of thalli was enhanced by 22-18 °C condition compared with 22-22 °C, but the increase was only significant under HN condition; 3) 22-18°C-grown thalli had a lower net photosynthetic rate, maximal quantum yield (Fv/Fm), and dark respiration rate (Rd) than those grown at 22-22 °C; 4) No significant effects of diurnal temperature difference were detected on the SOD activity and soluble sugar content under LN and HN conditions, while the soluble protein content was enhanced by 22-18 °C under LN condition; 5) The nitrogen affected metabolite variations in U. prolifera more significantly than the diurnal temperature difference. The metabolite levels in the tricarboxylic acid cycle, amino acid, phospholipids, pyrimidine, and purine metabolism pathways increased under HN condition. The levels of glutamine, γ-aminobutyrate (GABA), 1-aminocyclopropane-1-carboxylate (ACC), glutamic acid, citrulline, glucose, sucrose, stachyose, and maltotriose were enhanced by 22-18 °C, especially under HN condition. These results identify the potential role of the diurnal temperature difference and offer new insight into the molecular mechanisms for U. prolifera responses to eutrophication and temperature.


Subject(s)
Chlorophyll , Ulva , Chlorophyll/metabolism , Temperature , Chlorophyll A , Nitrogen/metabolism , Photosynthesis/physiology , Superoxide Dismutase/metabolism , Sugars
8.
Mar Environ Res ; 183: 105838, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36525828

ABSTRACT

This study investigated the effect of the surfactant cocamidopropyl betaine (CAB) on the growth of red tide microalgae Skeletonema costatum. It was found that CAB caused cell lysis in a time- and dose-dependent manner and significantly inhibited the growth of S. costatum. Additionally, the transcriptomic approach was coupled with physiological analysis to elucidate the inhibitory mechanism of CAB on S. costatum. Among the 30726 genes identified, 17720 and 20583 genes were differentially expressed after treatment for 3 h and 6 h, respectively, which revealed that CAB redirected metabolic pathways, of which the expressions of genes related to the proteasome, ABC transporters, and amino acid-related metabolism were significantly upregulated, while genes involved in photosynthesis, biofilm and cell wall synthesis, mitogen-activated protein kinase (MAPK) cascades and antioxidant system were downregulated. The results above corresponded to the decreasing antioxidant enzymes activities, protein and photosynthetic pigments contents, as well as the increasing malondialdehyde (MDA) content. Our study presented herein shed light on the algicidal mechanism of CAB at the transcriptome level and was useful to red tide control, and marine environmental protection.


Subject(s)
Diatoms , Microalgae , Harmful Algal Bloom , Antioxidants , Transcriptome , Diatoms/physiology
9.
Front Bioeng Biotechnol ; 10: 1066799, 2022.
Article in English | MEDLINE | ID: mdl-36466329

ABSTRACT

The use of antibiotics to facilitate resistance to pathogens in aquatic animals is a traditional method of pathogen control that is harmful to the environment and human health. RNAi is an emerging technology in which homologous small RNA molecules target specific genes for degradation, and it has already shown success in laboratory experiments. However, further research is needed before it can be applied in aquafarms. Many laboratories inject the dsRNA into aquatic animals for RNAi, which is obviously impractical and very time consuming in aquafarms. Therefore, to enable the use of RNAi on a large scale, the methods used to prepare dsRNA need to be continuously in order to be fast and efficient. At the same time, it is necessary to consider the issue of biological safety. This review summarizes the key harmful genes associated with aquatic pathogens (viruses, bacteria, and parasites) and provides potential targets for the preparation of dsRNA; it also lists some current examples where RNAi technology is used to control aquatic species, as well as how to deliver dsRNA to the target hydrobiont.

10.
BMC Plant Biol ; 22(1): 597, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536287

ABSTRACT

BACKGROUND: Posttranscriptional processing of precursor mRNAs contributes to transcriptome and protein diversity and gene regulatory mechanisms in eukaryotes. However, this posttranscriptional mechanism has not been studied in the marine macroalgae Gracilariopsis lemaneiformis, which is the most cultivated red seaweed species in China. RESULTS: In the present study, third-generation sequencing (Pacific Biosciences single-molecule real-time long-read sequencing, SMRT-Seq) was used to sequence the full-length transcriptome of G. lemaneiformis to identify alternatively spliced transcripts and alternative polyadenylation (APA) sites in this species. RNAs were isolated from G. lemaneiformis under various treatments including abiotic stresses and exogenous phytohormones, and then equally pooled for SMRT-Seq. In summary, 346,544 full-length nonchimeric reads were generated, from which 13,630 unique full-length transcripts were obtained in G. lemaneiformis. Compared with the known splicing events in the gene models, more than 3000 new alternative splicing (AS) events were identified in the SMRT-Seq reads. Additionally, 810 genes were found to have poly (A) sites and 91 microRNAs (miRNAs), 961 long noncoding RNAs and 1721 novel genes were identified in G. lemaneiformis. Moreover, validation experiments showed that abiotic stresses and phytohormones could induce some specific AS events, especially intron retain isoforms, cause some alterations to the relative ratios of transcripts annotated to the same gene, and generate novel 3' ends because of differential APA. The growth of G. lemaneiformis was inhibited by Cu stress, while this inhibition was alleviated by ACC treatment. RNA-Seq analysis further revealed that 211 differential alternative splicing (DAS) events and 142 DAS events was obtained in CK vs Cu and Cu vs Cu + ACC, respectively, suggesting that AS of functional genes could be regulated by Cu stress and ACC. Compared with Cu stress, the expression of transcripts with DAS events mainly involved in the carbon fixation in photosynthetic organisms and oxidative phosphorylation pathway was upregulated in Cu + ACC treatment, revealing that ACC alleviated the growth inhibition by Cu stress by increasing carbon fixation and oxidative phosphorylation. CONCLUSIONS: Our results provide the first comprehensive picture of the full-length transcriptome and posttranscriptional mechanism in red macroalgae, including transcripts that appeared in the presence of common abiotic stresses and phytohormones, which will improve the gene annotations of Gracilariopsis and contribute to the study of gene regulation in this important cultivated seaweed.


Subject(s)
Plant Growth Regulators , Transcriptome , Alternative Splicing , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA Splicing
11.
Bioresour Technol ; 364: 128067, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36202281

ABSTRACT

The thick cell wall and low astaxanthin productivity were two important bottlenecks limiting industrial production of astaxanthin via Haematococcus pluvialis. This study reports a strategy for increasing production and bio-accessibility of astaxanthin in H. pluvialis by screening and culturing red motile cells under high light condition. Compared with the original strain NBU489, the biomass of the novel isolated strain RMS10 increased by 31.9% under low light condition, and the astaxanthin content (44.6 mg/g) increased by 53.3% after 9-day high light induction, which were readily extracted and digested without cell disruption. Subsequent transcriptomic analysis confirmed the accumulation of astaxanthin and lipids in RMS10 cells as expression of genes associated with biosynthesis of fatty acid and astaxanthin were up-regulated, while those involved in thick cell wall biosynthesis and reactive oxygen species scavenging were down-regulated in RMS10. Collectively, this study provides a simple and effective method for economical production of natural astaxanthin.

12.
Mar Drugs ; 20(7)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35877735

ABSTRACT

Agar is widely applied across the food, pharmaceutical and biotechnology industries, owing to its various bioactive functions. To better understand the agar biosynthesis in commercial seaweed Gracilariopsis lemaneiformis, the activities of four enzymes participating in the agar biosynthesis were detected, and phosphoglucomutase (PGM) was confirmed as highly correlated with agar accumulation. Three genes of PGM (GlPGM1, GlPGM2 and GlPGM3) were identified from the G. lemaneiformis genome. The subcellular localization analysis validated that GlPGM1 was located in the chloroplast and GlPGM3 was not significantly distributed in the organelles. Both the GlPGM1 and GlPGM3 protein levels showed a remarkable consistency with the agar variations, and GlPGM3 may participate in the carbon flux between (iso)floridoside, floridean starch and agar synthesis. After treatment with the PGM inhibitor, the agar and floridean starch contents and the activities of floridean starch synthase were significantly decreased; products identified in the Calvin cycle, the pentose phosphate pathway, the Embden-Meyerhof-Parnas pathway and the tricarboxylic acid cycle were depressed; however, lipids, phenolic acids and the intermediate metabolites, fructose-1,6-phosphate were upregulated. These findings reveal the essential role of PGM in regulating the carbon flux between agar and other carbohydrates in G. lemaneiformis, providing a guide for the artificial regulation of agar accumulation.


Subject(s)
Phosphoglucomutase , Rhodophyta , Agar/metabolism , Carbon Cycle , Phosphoglucomutase/genetics , Phosphoglucomutase/metabolism , Rhodophyta/metabolism , Starch/metabolism
13.
Front Nutr ; 9: 876992, 2022.
Article in English | MEDLINE | ID: mdl-35651509

ABSTRACT

The sulfated polysaccharide was isolated from the purified G. lemaneiformis polysaccharide (PGP), and its property in delaying H2O2-induced 2BS cellular senescence was studied. The results showed that PGP was a linear polysaccharide containing alternating α-(1 → 3)- and ß-(1 → 4)-galactopyranose units. Most of the sulfate groups are at C6 of the -(1 → 4)-α-D-Galp, and a small part of them are at C3 and C6. PGP pretreatment could decrease SA-ß-gal-positive cells and prevent the formation of senescence-associated heterochromatic foci (SAHF) induced by H2O2 in a dose-dependent manner. It is speculated that PGP may delay aging by downregulating the expression of p21 and p53 genes. The finding provides new insights into the beneficial role of G. lemaneiformis polysaccharide (GP) on retarding senescence process.

14.
Mar Environ Res ; 179: 105688, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35759824

ABSTRACT

High temperatures seriously limit the growth and productivity of Gracilariopsis lemaneiformis. By hydrolyzing glycerolipids into lysophospholipids (LPs) and free fatty acids (FFAs), patatin-like phospholipase A (pPLA) plays an important role in stress responses. GlpPLA expression was up-regulated under heat stress, however, the regulation of pPLA in heat tolerance of G. lemaneiformis is unknown. In this study, G. lemaneiformis under heat stress was treated with bromoenololide (BEL), a chemical inhibitor of pPLA, to evaluate the cellular function of pPLA in this species. When pPLA was inhibited through BEL treatment, the sensitivity of G. lemaneiformis to heat stress increased and the biomass and maximum and effective quantum yield of photosystem II decreased. Moreover, BEL treatment resulted in a significant decrease in many lipid molecular species, all of which are mainly composed of 16C, 18C, and 20C fatty acids. Consistently, FFA levels and LPs contents in G. lemaneiformis under BEL treatment showed a significant decrease. The first step in the synthesis of jasmonic acid (JA) is the lipoxygenase (LOX)-mediated oxygenation of linolenic acid (C18:3). BEL treatment decreased JA and C18:3 accumulation and markedly downregulated the expression of GILOX under heat stress. Together, these results indicate that pPLA is closely related to the growth of G. lemaneiformis under heat stress, and pPLA is involved in the lipid metabolism and JA biosynthesis of G. lemaneiformis in response to heat stress. This research broadens the understanding of the heat stress adaptation mechanism of G. lemaneiformis.


Subject(s)
Rhodophyta , Thermotolerance , Cyclopentanes , Lipid Metabolism , Lipopolysaccharides/metabolism , Oxylipins , Phospholipases/metabolism , Rhodophyta/metabolism
15.
Bioresour Technol ; 354: 127175, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35452826

ABSTRACT

Sodium acetate (NaAc) supplementation, often used to increase the growth of H. pluvialis under low light, but promotes cell death under high light; its underlying reasons and solutions are rarely reported. Here, NaAc supplementation was found to rapidly increase pondus hydrogenii (pH) of culture solution, elevate reactive oxygen species (ROS), and cause cell death immediately under higher light. Adjusting pH of NaAc supplemented culture solution with 10 mM Tris-HCl once before high light significantly reduced cell mortality and increased astaxanthin yield. When verified in a 5-litre photobioreactor, this novel method produced over 4.0% of dry weight (DW) astaxanthin within only 8-10 days. In summary, this study explained reasons underlying NaAc supplementation-induced cell death and provided an rapid, easy and effective method to produce high amount of astaxanthin in H. pluvialis.


Subject(s)
Chlorophyceae , Chlorophyta , Chlorophyceae/metabolism , Chlorophyta/metabolism , Photobioreactors , Xanthophylls/metabolism
16.
Mar Pollut Bull ; 170: 112673, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34225191

ABSTRACT

In this study, we aim to explore the allelochemicals of marine brown algae Sargassum fusiforme and the mechanism of allelopathy effect on Heterosigma akashiwo. Six potential allelopathic substances, palmitic acid, arachidonic acid, α-linolenic acid (ALA), fucosterol, 24-hydroperoxy-24-vinylcholesterol, and saringosterowere, were isolated and identified from S. fusiforme by column chromatography, NMR, TOF-MS and GC-MS analyses. The ALA and 24-hydroperoxy-24-vinylcholesterol showed remarkable inhibitory activities on H. akashiwo growth. Besides, the allelopathic mechanism between the ALA and H. akashiwo was preliminarily investigated. The results indicated that the activities of SOD and POD of H. akashiwo gradually decreased under high ALA concentration. The reduction of photosynthetic pigments and chlorophyll fluorescence parameters, as well as apparent electron transport rate in H. akashiwo cells, aggravated gradually with increasing the concentration of the ALA. In summary, this study revealed the responses of morphology and physiology of H. akashiwo when exposed by ALA, while revealing the potential of macroalgae in red tide control.


Subject(s)
Microalgae , Sargassum , Allelopathy , Harmful Algal Bloom , Pheromones
17.
Mar Drugs ; 19(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066101

ABSTRACT

Gracilariopsis lemaneiformis polysaccharides (GLP) were degraded using pectinase, glucoamylase, cellulase, xylanase, and ß-dextranase into low-molecular-weight polysaccharides, namely, GPP, GGP, GCP, GXP, and GDP, respectively, and their antioxidant capacities were investigated. The degraded GLP showed higher antioxidant activities than natural GLP, and GDP exhibited the highest antioxidant activity. After the optimization of degradation conditions through single-factor and orthogonal optimization experiments, four polysaccharide fractions (GDP1, GDP2, GDP3, and GDP4) with high antioxidant abilities (hydroxyl radical scavenging activity, DPPH radical scavenging activity, reduction capacity, and total antioxidant capacity) were obtained. Their cytoprotective activities against H2O2-induced oxidative damage in human fetal lung fibroblast 1 (HFL1) cells were examined. Results suggested that GDP pretreatment can significantly improve cell viability, reduce reactive oxygen species and malonaldehyde levels, improve antioxidant enzyme activity and mitochondria membrane potential, and alleviate oxidative damage in HFL1 cells. Thus, the enzyme degradation of GLP with ß-dextranase can significantly improve its antioxidant activity, and GDP might be a suitable source of natural antioxidants.


Subject(s)
Antioxidants/metabolism , Antioxidants/pharmacology , Polysaccharides/metabolism , Polysaccharides/pharmacology , Rhodophyta/chemistry , Antioxidants/analysis , Cell Line , Cell Survival/drug effects , Glycoside Hydrolases/metabolism , Humans , Hydrogen Peroxide/toxicity , Hydrolysis , Hydroxyl Radical/metabolism , Lipid Peroxidation/drug effects , Membrane Potential, Mitochondrial/drug effects , Molecular Weight , Oxidative Stress/drug effects , Polysaccharides/analysis , Reactive Oxygen Species/metabolism , Spectroscopy, Fourier Transform Infrared
18.
Food Res Int ; 143: 110313, 2021 05.
Article in English | MEDLINE | ID: mdl-33992332

ABSTRACT

Marine organisms have received mounting attention in antiaging activity due to their exclusive chemicals. This review aims at revealing and discussing prospective antiaging substance from marine macroalgae, micaroalgae, invertebrate and vertebrate. The activity and mechanism of the carbohydrate, protein, pigment, flavonoids, fatty acids, phenols from marine organisms were revealed through a variety of antiaging experimental models such as rats, Drosophila melanogaster and Caenorhabditis elegans. And meanwhile, the problems and prospects aspects were discussed for future research in this field. It was suggested that the antiaging functional ingredients from these marine organisms are alternative sources for synthetic ingredients that can contribute to consumer's well-being, as part of nutraceuticals, functional foods and cosmetics.


Subject(s)
Aquatic Organisms , Drosophila melanogaster , Animals , Dietary Supplements , Functional Food , Prospective Studies , Rats
19.
Mar Environ Res ; 163: 105204, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33213860

ABSTRACT

To study the combined effects of ocean acidification (OA) and warming on the growth and photosynthetic performance of the economically important marine macroalga Gracilariopsis lemaneiformis, thalli were grown under ambient low CO2 (390 µatm, LC) and elevated high CO2 (1000 µatm, HC) conditions with culture temperatures of 20 °C and 24 °C. Based on the evaluation of growth and photosynthetic responses to light and dissolved inorganic carbon (DIC), HC decreased the growth rate and phycoerythrin (PE) and phycocyanin (PC) levels but increased contents of UV-absorbing compounds (UVACs) in G. lemaneiformis at 20 °C, and high temperature counteracted these effects. Photosynthetic responses such as chlorophyll fluorescence parameters (maximum relative electron transport rate, rETRmax; light use efficiency, α; saturation light intensity, Ik; maximum quantum yield, FV/FM; effective quantum yield, Y(II) and non-photochemical quenching, NPQ) were not different among the treatments. However, increased oxygen evolution (Pn) and dark respiration (Rd) rates were observed at 20 °C in the HC treatment. No significant effects of HC on apparent carboxylation efficiency (ACE), maximum oxygen evolution rate (Vmax) and DIC affinity for oxygen evolution (K1/2DIC) were found, and HC synergy with high temperature increased K1/2DIC. A lower C/N ratio with decreased tissue carbon but increased nitrogen was observed under HC and high-temperature treatment. Our results indicate that high temperature may counteract the negative effects of OA on the growth and pigment characteristics of G. lemaneiformis and improve food quality, as evidenced by enhanced N per biomass.


Subject(s)
Chlorophyll , Seaweed , Carbon Dioxide , Hydrogen-Ion Concentration , Oceans and Seas , Photosynthesis , Seawater
20.
Mar Pollut Bull ; 146: 85-91, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31426228

ABSTRACT

In order to understand how darkness/irradiance and low nighttime temperature might alter physiology of Ulva prolifera under lower salinity conditions, we analyzed the growth rates, water content, superoxide dismutase (SOD) activity, total soluble proteins (SPs) and carbohydrates content at the end of dark and light period under three temperature levels (25-25 °C treatment: 25 °C for day and night; 15-15 °C treatment: 15 °C for day and night; 25-15 °C treatment: 25 °C for day with 15 °C for night) and two salinity conditions (15, 25), meanwhile, the pigment content (chlorophyll a and b), chlorophyll fluorescence and photosynthetic oxygen evolution also were determined during light phase. We found that the U. prolifera showed higher growth rate and SOD activity during dark phase at 25 °C, but this dark-induced increase could not be observed at 15 °C. The reasons for this increase varied, however, maybe not included water content and SPs for no significant difference in water content observed under all the treatments, as well as lower SPs content for dark period aside that at 15 °C and salinity 15. Compared to other two temperature treatments, the thalli grown at 25-15 °C showed higher growth rate and the photosynthetic oxygen evolution rate in light phase under salinity 15 conditions, although the maximum relative electron transport rate (rETRmax) showed higher value under 25 °C treatment. These results indicate that the darkness and the lower nighttime temperature maybe responsible reason for the rapid growth of these green tide algae.


Subject(s)
Ulva/physiology , Chlorophyll/metabolism , Darkness , Oxygen/metabolism , Photosynthesis/physiology , Plant Proteins/metabolism , Salinity , Superoxide Dismutase/metabolism , Temperature , Ulva/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...