Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Dermatol Sci ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38749796

ABSTRACT

BACKGROUND: Ultraviolet (UV) damage is closely related to skin photoaging and many skin diseases, including dermatic tumors. N6-methyladenosine (m6A) modification is an important epigenetic regulatory mechanism. However, the role of m6A methylation in apoptosis induced by repeated UV irradiation has not been characterized. OBJECTIVE: To explore m6A methylation changes and regulatory mechanisms in the repeated UV-induced skin damage process, especially apoptosis. METHODS: HaCaT cells and BALB/c-Nu nude mice were exposed to repeated UVB/UVA+UVB irradiation. Colorimetry and flow cytometry were used to measure cellular viability and apoptosis. m6A-modified genes were detected via colorimetry and methylated RNA immunoprecipitation (MeRIP) sequencing. Methyltransferases and demethylases were detected via RT-PCR, western blotting and immunohistochemistry. Transfection of siRNA and plasmid was performed to knock down or overexpress the selected genes. RESULTS: After UVB irradiation, 861 m6A peaks were increased and 425 m6A peaks were decreased in HaCaT cells. The differentially modified genes were enriched in apoptosis-related pathways. The m6A demethylase FTO was decreased in both HaCaT cells and mouse skin after UV damage. Overexpressing FTO could improve cell viability, inhibit apoptosis and decrease RNA-m6A methylation, including LPCAT3-m6A, which increase LPCAT3 expression, cell viability promotion and apoptosis inhibition. CONCLUSION: Our study identified the cell m6A methylation change lists after repeated UVB irradiation, and revealed that FTO and LPCAT3 play key roles in the m6A methylation pathogenesis of UV-induced skin cell apoptosis. FTO-m6A-LPCAT3 might serve as a novel upstream target for preventing and treating photoaging and UV-induced skin diseases.

2.
Arch Microbiol ; 206(4): 174, 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38493436

ABSTRACT

The present study focuses on investigating 60 strains of yeast isolated from the natural fermentation broth of Vitis labruscana Baily × Vitis vinifera L. These strains underwent screening using lysine culture medium and esculin culture medium, resulting in the identification of 27 local non-Saccharomyces yeast strains exhibiting high ß-glucosidase production. Subsequent analysis of their fermentation characteristics led to the selection of four superior strains (Z-6, Z-11, Z-25, and Z-58) with excellent ß-glucosidase production and fermentation performance. Notably, these selected strains displayed a dark coloration on esculin medium and exhibited robust gas production during Duchenne tubules' fermentation test. Furthermore, all four non-Saccharomyces yeast strains demonstrated normal growth under specific conditions including SO2 mass concentration ranging from 0.1 to 0.3 g/L, temperature between 25 and 30 °C, glucose mass concentration ranging from 200 to 400 g/L, and ethanol concentration at approximately 4%. Molecular biology identification confirmed that all selected strains belonged to Pichia kudriavzevii species which holds great potential for wine production.


Subject(s)
Vitis , Wine , Saccharomyces cerevisiae/metabolism , Fermentation , beta-Glucosidase/metabolism , Esculin/analysis , Yeasts/metabolism , Wine/analysis , Pichia/metabolism
3.
Protein Expr Purif ; 217: 106432, 2024 May.
Article in English | MEDLINE | ID: mdl-38232795

ABSTRACT

Natural ginsenoside needs to be converted into rare ginsenoside before it can be readily absorbed into the bloodstream for action. In this study, an α-l-arabinofuranosidase (α-l-AFase) gene Bsafs2 was cloned from Bacillus subtilis (B. subtilis). Bsafs2 was ligated to the expression vector pET28a(+), and the expression vector was constructed and transformed into Escherichia coli (E. coli) BL21 heterologous recombinant expression to obtain α-l-AFase. α-l-AFase can hydrolyze at the C20 site of Ginsenoside Rc to obtain rare ginsenoside Rd. Studies on the enzymatic property showed that α-l-AFase had good tolerance to ethanol, glucose, and l-arabinose. The optimum temperature of α-l-AFase was 40 °C and pH = 5.5. Kinetic parameters Km of α-l-AFase for pNPαAraf and Ginsenoside Rc were 1.93 and 8.9 mmol/L, the Vmax were 26 and 154 µmol/min/mg, the Kcat were 24.14 and 1.48 S-1, respectively. This study provides the enzyme source for the biotransformation of Ginsenoside Rc.


Subject(s)
Ginsenosides , Ginsenosides/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Cloning, Molecular , Recombinant Proteins/chemistry , Escherichia coli/metabolism , Glycoside Hydrolases/chemistry
5.
RSC Adv ; 13(38): 26869-26878, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37692353

ABSTRACT

In the integrated circuit industry, metal liquids are frequently in contact with chemical vapor deposited (CVD) SiC, and it is important to understand the interactions between CVD-SiC and metal droplets. In this study, the wetting behavior of Al on a highly oriented SiC surface was investigated, and the contact angle could be controlled from 6° to 153° at a wetting temperature (Twet) of 1573-1773 K; the obtained contact angle range was larger than that of polycrystalline silicon carbide (Twet = 873-1473 K, 9-113°) and single crystal silicon carbide (Twet = 873-1473 K, 31-92°). The presence of many dislocations at the Al/SiC interface increased the interfacial energy, resulting in a greater contact angle for Al on the 〈111〉-oriented SiC coating surface than on the 〈110〉 one.

6.
Genes Genomics ; 45(12): 1549-1562, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37768517

ABSTRACT

BACKGROUND: Both epidemiological and clinical studies have suggested the comorbidity between cutaneous melanoma (CM) and obesity-related physical traits. However, it remains unclear about their shared genetic architecture. OBJECTIVE: To determine the shared genetic architecture between CM and obesity-related physical traits through conditional false discovery rate (cFDR) analysis. METHOD: Quantile-quantile plots were firstly built to assess the pleiotropic enrichment of shared single nucleotide polymorphisms between CM and each trait. Then, cFDR and conjunctional cFDR (ccFDR) were used to identify the shared risk loci between CM and each trait. Moreover, the functional evaluation of shared risk genes was carried out through analyses of expression quantitative trait loci (eQTL), Kyoto Encyclopedia of Genes and Genomes and gene ontology, respectively. Finally, single-cell sequence analysis was performed to locate the expression of eQTL-mapped genes in tissues. RESULTS: Successive pleiotropic enrichment was found between CM and 5 obesity-related traits or height. 24 shared risk loci were identified between CM and 13 traits except appendicular lean mass using ccFDR analysis, with 17 novel and 4 validated loci. The functions of ccFDR-identified and eQTL-mapped genes were revealed to be mainly involved in cellular senescence, proliferation, meiotic nuclear division, cell cycle, and the metabolism of lipid, cholesterol and glucose. Single-cell sequence analysis showed that keratinocytes contribute to the occurrence and aggressiveness of CM through secreting paracrine cytokines. CONCLUSION: Our findings demonstrate the significant genetic correlation between CM and obesity-related physical traits, which may provide a novel genetical basis for the pathogenesis and treatment of CM.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Skin Neoplasms/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease , Obesity/genetics , Genomics , Quantitative Trait Loci , Melanoma, Cutaneous Malignant
7.
J Dermatol Sci ; 112(2): 71-82, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741724

ABSTRACT

BACKGROUND: Advanced glycation end products (AGEs) promote melanogenesis through activating NLRP3 inflammasome in fibroblasts. Although A20 has been highlighted to inhibit NLRP3 inflammasome activation, its roles and mechanisms remain elusive in photoaging-associated pigmentation. OBJECTIVES: To determine the significance of fibroblast A20 in AGEs-induced NLRP3 inflammasome activation and pigmentation. METHODS: The correlation between A20 and AGEs or melanin was studied in sun-exposed skin and lesions of melasma and solar lentigo. We then investigated A20 level in AGEs-treated fibroblast and the effect of fibroblast A20 overexpression or knockdown on AGEs-BSA-induced NLRP3 inflammasome activation and pigmentation, respectively. Finally, the severity of NLRP3 inflammasome activation and pigmentation was evaluated after mice were injected intradermally with A20-overexpression adeno-associated virus and AGEs-BSA. RESULTS: Dermal A20 expression was decreased and exhibited negative correlation with either dermal AGEs deposition or epidermal melanin level in sun-exposed skin and pigmentary lesions. Moreover, both AGEs-BSA and AGEs-collagen robustly decreased A20 expression via binding to RAGE in fibroblasts. Further, A20 overexpression or depletion significantly decreased or augmented AGEs-BSA-induced activation of NF-κB pathway and NLRP3 inflammasome and IL-18 production and secretion in fibroblasts, respectively. Importantly, fibroblast A20 potently repressed AGEs-BSA-stimulated melanin content,tyrosinase activity,and expression of microphthalmia-associated transcription factor and tyrosinase in melanocytes. Particularly, fibroblast A20 significantly abrogated AGEs-BSA-promoted melanogenesis in ex vivo skin and mouse models. Additionally, fibroblast A20 inhibited AGEs-BSA-activated MAPKs in melanocytes and the epidermis of ex vivo skin. CONCLUSIONS: Fibroblast A20 suppresses AGEs-stimulate melanogenesis in photoaging-associated hyperpigmentation disorders by inhibiting NLRP3 inflammasome activation.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Glycation End Products, Advanced/metabolism , Melanins/metabolism , Monophenol Monooxygenase/metabolism , Fibroblasts/metabolism
8.
J Glob Antimicrob Resist ; 35: 19-25, 2023 12.
Article in English | MEDLINE | ID: mdl-37567469

ABSTRACT

OBJECTIVES: To investigate the gene mutations associated with ceftriaxone (CRO) resistance among gonococcal isolates, and to determine the effects of the mutated genes on CRO minimum inhibitory concentrations (MICs) with transformation assays and antisense peptide nucleic acids (asPNAs). METHODS: Ceftriaxone-resistant (CROR) and ceftriaxone-susceptible (CROS) isolates were identified using EUCAST and paired according to similarity in their MICs to other antimicrobials. The two groups of gonococci were sequenced and analysed. Mutated genes that showed a statistical difference between the two groups were transformed into gonococcal reference strains to determine their functions. AsPNAs were designed and transformed into the former transformant to further confirm the effects of the mutated genes. RESULTS: Twenty-two paired CROR and CROS isolates were obtained. The incidence of the penA-A501T and penA-G542S mutations individually, as well as combined mutations (penA-A501T and ftsX-R251H, penA-G542S and ftsX R251H), was statistically different between the two groups. The MIC of ATCC43069 (A43) increased 2 times following transformation with penA-A501T, and the MICs of A43 and ATCC49226 (A49) increased 32 times and 2 times following transformation with penA-A501T and ftsX-R251H, respectively. Antisense PNA-P3 reduced the MIC of the A43 transformant most significantly when transformed individually. PNA-P3 and PNA-F1 (asPNAs of the penA and ftsX) restored CRO susceptibility. CONCLUSIONS: PenA-A501T and penA-G542S mutations are important in CRO resistance among gonococci isolates. The ftsX-R251H mutation is also related to CRO resistance, and combined mutations of ftsX-R251H and penA-A501T comediate a significant reduction in CRO susceptibility. The combined application of PNA-P3 and PNA-F1 could effectively reverse the resistance to CRO in N. gonorrhoeae.


Subject(s)
Gonorrhea , Peptide Nucleic Acids , Humans , Ceftriaxone/pharmacology , Neisseria gonorrhoeae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Peptide Nucleic Acids/genetics , Peptide Nucleic Acids/pharmacology , Gonorrhea/epidemiology , Mutation
9.
Photodermatol Photoimmunol Photomed ; 39(5): 487-497, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37253092

ABSTRACT

BACKGROUND: Lysosomal cathepsin D (CTSD) can degrade internalized advanced glycation end products (AGEs) in dermal fibroblasts. CTSD expression is decreased in photoaged fibroblasts, which contributes to intracellular AGEs deposition and further plays a role in AGEs accumulation of photoaged skin. The mechanism under downregulated CTSD expression is unclear. OBJECTIVE: To explore possible mechanism of regulating CTSD expression in photoaged fibroblasts. METHODS: Dermal fibroblasts were induced into photoaging with repetitive ultraviolet A (UVA) irradiation. The competing endogenous RNA (ceRNA) networks were constructed to predict candidate circRNAs or miRNAs related with CTSD expression. AGEs-BSA degradation by fibroblasts was studied with flow cytometry, ELISA, and confocal microscopy. Effects of overexpressing circRNA-406918 via lentiviral transduction on CTSD expression, autophagy, AGE-BSA degradation were analyzed in photoaged fibroblasts. The correlation between circRNA-406918 and CTSD expression or AGEs accumulation in sun-exposed and sun-protected skin was studied. RESULTS: CTSD expression, autophagy, and AGEs-BSA degradation were significantly decreased in photoaged fibroblasts. CircRNA-406918 was identified to regulate CTSD expression, autophagy, and senescence in photoaged fibroblasts. Overexpressing circRNA-406918 potently decreased senescence and increased CTSD expression, autophagic flux, and AGEs-BSA degradation in photoaged fibroblasts. Moreover, circRNA-406918 level was positively correlated with CTSD mRNA expression and negatively associated with AGEs accumulation in photodamaged skin. Further, circRNA-406918 was predicted to mediate CTSD expression through sponging eight miRNAs. CONCLUSION: These findings suggest that circRNA-406918 regulates CTSD expression and AGEs degradation in UVA-induced photoaged fibroblasts and might exert a role in AGEs accumulation in photoaged skin.


Subject(s)
MicroRNAs , Skin Aging , Humans , Cathepsin D/genetics , Cathepsin D/metabolism , Cathepsin D/pharmacology , Fibroblasts/metabolism , Glycation End Products, Advanced/metabolism , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/pharmacology , Skin/metabolism , Skin Aging/genetics , Ultraviolet Rays/adverse effects
10.
ACS Appl Mater Interfaces ; 15(22): 27399-27410, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37226047

ABSTRACT

Implantable electrochemical sensor holds great promise in the real-time monitoring of dopamine (DA) to regulate body function. However, the real application of these sensors is limited by the weak current signal of DA in the human body and the poor compatibility of the on-chip microelectronic devices. In this work, a SiC/graphene composite film was fabricated using laser chemical vapor deposition (LCVD) and employed as a DA sensor. The graphene in the porous nanoforest-like SiC framework offered efficient channels for electronic transmission, leading to an enhanced electron transfer rate and consequently an increased current response for DA detection. The three-dimensional (3D) porous network also facilitated the exposure of more catalytic active sites toward DA oxidation. Besides, the wide distribution of graphene in the nanoforest-like SiC films reduced the interfacial resistance of the charge transfer. The SiC/graphene composite film exhibited excellent electrocatalytic activity toward DA oxidation with a low detection limit of 0.11 µM and a high sensitivity of 0.86 µA·µM-1·cm-2. The film electrode also showed a wide linear response for DA in 0.5-78 µM, along with good selectivity, repeatability, and reproducibility. Furthermore, the cell counting kit-8 (CCK-8) and live-dead assays revealed that the film is also biocompatible for biomedical applications. Therefore, the nanoforest-like SiC/graphene composite film via the CVD process enables a promising candidate for an integrated miniature DA biosensor with high detection performance.


Subject(s)
Cardiovascular Diseases , Graphite , Humans , Electrochemical Techniques/methods , Dopamine/chemistry , Graphite/chemistry , Reproducibility of Results , Electrodes
11.
Small ; 19(30): e2300154, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37060226

ABSTRACT

The oriented growth of ß-Ga2 O3 films has triggered extensive interest due to the remarkable and complex anisotropy found in the ß-Ga2 O3 bulks. Remarkable properties, including stronger solar-blind ultraviolet (SBUV) absorption, better mobility, and higher thermal conductivity, are usually observed along <010> direction as compared to other low-index axes. So far, <010>-oriented ß-Ga2 O3 film growth has been hindered by the lack of suitable substrates and higher surface energy of the (010) crystal plane. Herein, the first growth of uniquely <010>-oriented ß-Ga2 O3 films on quartz substrates by laser chemical vapor deposition (LCVD) are reported. By investigating the effects of deposition temperature (Tdep ) and O2 flow rate (RO2 ) on the growth of ß-Ga2 O3 films, it is found that the formation of <010> orientation is closely related to the higher stability of oxygen close-packed planes under O-rich condition. As a result, a grain size of up to ≈2 µm and a deposition rate of up to ≈ 40 µm h-1 are obtained. Metal-semiconductor-metal (MSM) type detector based on <010>-oriented ß-Ga2 O3 film exhibits ultra-fast response speed, 1-2 orders of magnitude higher than those of most detectors based on ß-Ga2 O3 films with other orientations.

12.
ACS Appl Mater Interfaces ; 15(12): 15965-15975, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36935547

ABSTRACT

Strong electromagnetic wave reflection loss concomitant with second emission pollution limits the wide applications of electromagnetic interference (EMI) shielding textiles. Decoration of textiles by using various dielectric materials has been found efficient for the development of highly efficient EMI shielding textiles, but it is still a challenge to obtain EMI shielding composites with thin thickness. A route of interfacial engineering may offer a twist to overcome these obstacles. Here, we fabricated a Ni nanoparticle/SiC nanowhisker/carbon cloth nanoheterostructure, where SiC nanowhiskers were deposited by a simple manufacturing method, namely, laser chemical vapor deposition (LCVD), directly grown on carbon cloth. Through directly constructing a Ni/SiC interface, we find that the formation of Schottky contact can influence the interfacial polarization associated with the generation of dipole electric fields, leading to an enhancement of dielectric loss. A striking feature of this interfacial engineering strategy is able to enhance the absorption of the incident electromagnetic wave while suppressing the reflection. As a result, our Ni/SiC/carbon cloth exhibits an excellent EMI shielding effectiveness of 68.6 dB with a thickness of only 0.39 mm, as well as high flexibility and long-term duration stability benefited from the outstanding mechanical properties of SiC nanowiskers, showing potential for EMI shielding applications.

13.
Sci Total Environ ; 857(Pt 2): 159442, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36252666

ABSTRACT

This study investigated the potential of ensiling pretreatment fortified with laccase and a lactic acid bacteria (LAB) inoculant on improving the utilization of alfalfa stems for bioethanol production. The alfalfa stems were ensiled with no additives (Con), 0.04 % laccase (LA), a LAB inoculant containing Pediococcus pentosaceus at 1 × 106 fresh weight (FW) and Pediococcus acidilactici at 3 × 105 cfu/g FW (PP), and a combination of LA and PP (LAP) for 120 days. By reshaping the bacterial community structure of alfalfa stem silages toward a higher abundance of Lactobacillus, the addition of laccase and LAB inoculant either alone or in combination facilitated lactic acid fermentation to reduce fermentation losses, as evidenced by low concentrations of ammonia nitrogen (53.7 to 68.9 g/kg total nitrogen) and ethanol (2.63 to 3.55 g/kg dry matter). All additive treatments increased lignocellulose degradation and soluble sugars concentrations of alfalfa stem silages. Due to delignification and polyphenol removal, glucan and xylan conversion (70.3 % vs. 35.7 % and 51.6 % vs. 27.9 %, respectively) and ethanol conversion efficiency (53.9 % vs. 26.4 %) of alfalfa stems were greatly increased by ensiling fortified with LA versus Con, and these variables (79.8 % for glucan, 58.7 % for xylan, and 60.1 % for ethanol conversion efficiency) were further enhanced with a synergistic effect of LA and PP fortification. The spearman correlation analysis revealed that bioethanol fermentation of silage biomass was closely related to ensiling parameters and total phenols. In conclusion, ensiling pretreatment with LA and PP combination offered a feasible way to efficient utilization of alfalfa stems for bioethanol production.


Subject(s)
Agricultural Inoculants , Medicago sativa , Medicago sativa/metabolism , Agricultural Inoculants/metabolism , Laccase/metabolism , Biomass , Xylans , Silage/analysis , Silage/microbiology , Fermentation , Lactic Acid/metabolism , Ethanol/analysis , Nitrogen , Glucans/metabolism
14.
Front Microbiol ; 13: 1035942, 2022.
Article in English | MEDLINE | ID: mdl-36274744

ABSTRACT

Ensiling has long been as a mainstream technology of preserving forage for ruminant production. This study investigated the effects of bioaugmented ensiling with laccase and Pediococcus pentosaceus on the fermentation quality, nutritive value, enzymatic hydrolysis, and bacterial community of alfalfa. The application of laccase and Pediococcus pentosaceus combination was more potent in modulating the fermentation quality of silage than laccase and Pediococcus pentosaceus alone, as indicated by higher lactic acid contents and lactic acid to acetic acid ratios, and lower pH, dry matter losses, and ammonia nitrogen contents. Moreover, treatments with additive enhanced protein preservation and structural carbohydrate degradation, while increasing true protein and water-soluble carbohydrate contents. By promoting lignin degradation, treatments containing laccase further facilitated the release of sugars from cellulose compared with treatment with Pediococcus pentosaceus alone. The additive treatments reduced the bacterial diversity and optimized the bacterial community composition of silage, with an increase in the relative abundance of desirable Lactobacillus and a decrease in the relative abundance of undesirable Enterobacter and Klebsiella. PICRUSt functional prediction based on Kyoto Encyclopedia of Genes and Genomes (KEGG) databases revealed that PL and LPL treatments increased the metabolism of membrane transport, carbohydrate, and terpenoids and polyketides related to fermentation activities. It can be concluded that bioaugmented ensiling with laccase and Pediococcus pentosaceus combination can be an effective and practical strategy to improve silage fermentation and nutrient preservation of alfalfa silage.

15.
RSC Adv ; 12(24): 15555-15563, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35685177

ABSTRACT

The use of hafnia (HfO2) has facilitated recent advances in high-density microchips. However, the low deposition rate, poor controllability, and lack of systematic research on the growth mechanism limit the fabrication efficiency and further development of HfO2 films. In this study, the high-throughput growth of HfO2 films was realized via laser chemical vapor deposition using a laser spot with a large gradient temperature distribution (100 K mm-1), in order to improve the experimental efficiency and controllability of the entire process. HfO2 films fabricated by a single growth process could be divided into four regions with different morphologies, and discerned for deposition temperatures increasing from 1300 K to 1600 K. The maximum deposition rate reached 362 µm h-1, which was 102 to 104 times higher than that obtained using existing deposition methods. The dielectric constants of high-throughput HfO2 films were in the range of 16-22, which satisfied the demand of replacing the traditional SiO2 layer for a new generation of microchips.

16.
Nanomaterials (Basel) ; 12(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35564155

ABSTRACT

Phase-selective synthesis is an effective way to expand the ultra-thin transition metal carbide family and tune its properties. Herein, a chemical vapor deposition route with specially designed substrate (Ta wire-Cu foil-Mo foil) is carried out to synthesize Mo-Ta-C ternary nanosheets with tunable phase structure. The Ta atoms diffuse on the surface of liquid copper and Mo atoms diffuse through the liquid copper to the surface, which react with the carbon atoms decomposed from the methane and form the Mo-Ta-C ternary nanosheets. By precisely tailoring the Mo/Ta ratio and growth temperature, ultrathin layered orthorhombic (Mo2/3Ta1/3)2C nanosheets and non-layered cubic (Mo0.13Ta0.87) C nanosheets with thickness of 21 and 4 nm are selectively synthesized. The approach could pave the way for the formation of multi-component carbide nanosheets with controllable phases.

17.
RSC Adv ; 12(17): 10496-10503, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35424973

ABSTRACT

NiO combined with conductive materials is a practicable way to improve its catalytic property for the oxygen evolution reaction (OER) by enhancing its electrical conductivity. Herein, Ni@NiO@graphite nanoparticles less than 20 nm in average diameter were synthesized by a one-step chemical vapor deposition process. Due to the deliberately controlled lack of oxygen, Ni particles and carbon clusters decomposed from NiCp2 precursors were oxidized incompletely and formed Ni@NiO core-shell nanoparticles coated by a graphite layer. The thickness of the graphite layer and the content of Ni were controlled by varying deposition temperature. The electrochemical activity towards the oxygen evolution reaction was assessed within alkaline media. Compared with commercial NiO powder, the Ni@NiO@graphite nanoparticles with the unique core-shell microstructure exhibit excellent OER performance, i.e., an overpotential of 330 mV (vs. RHE) at 10 mA cm-2 and a Tafel slope of 49 mV dec-1, due to the improved electrical conductivity and more active sites. This work provides a facile and rapid strategy to produce nanoparticles with unique microstructures as highly active electrocatalysts for the OER.

18.
J Invest Dermatol ; 142(10): 2591-2602.e8, 2022 10.
Article in English | MEDLINE | ID: mdl-35421403

ABSTRACT

Advanced glycation end product (AGE) accumulation is significantly increased in the dermis of photoaged skin and plays crucial roles in photoaging. Although AGEs have been found to contribute to the yellowish discoloration of photoaged skin, their roles in photoaging-associated hyperpigmentation disorders have not been extensively studied. In this study, we observed that AGEs, NLRP3, and IL-18 were increased in the dermis of sun-exposed skin and lesions of melasma and solar lentigo and that dermal deposition of AGE was positively correlated with epidermal melanin levels. In addition, we found that AGE-BSA potently activated NLRP3 inflammasome and promoted IL-18 production and secretion in cultured fibroblasts, which was mediated by receptor for AGE/NF-κB pathway. Moreover, AGE-BSA significantly promoted melanogenesis by increasing tyrosinase activity and expression of microphthalmia-associated transcription factor and tyrosinase, which was dependent on NLRP3 inflammasome activation and IL-18 secretion in fibroblasts. Notably, AGE-collagen could activate NLRP3 inflammasome in fibroblasts and enhance melanogenesis. Furthermore, we found that IL-18 enhanced melanogenesis by binding to its receptor and activating p38 MAPK and extracellular signal‒regulated kinase 1/2 signaling pathways in melanocytes. Importantly, the promelanogenesis of AGE-BSA was verified in ex vivo cultured skin and mouse models. These findings suggest that dermal AGEs stimulate melanogenesis and contribute to the development of photoaging-associated hyperpigmentation disorders.


Subject(s)
Inflammasomes , Lentigo , Animals , Fibroblasts/metabolism , Glycation End Products, Advanced/metabolism , Humans , Inflammasomes/metabolism , Interleukin-18/metabolism , Melanins/metabolism , Mice , Microphthalmia-Associated Transcription Factor/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Monophenol Monooxygenase/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Epigenomics ; 14(8): 431-449, 2022 04.
Article in English | MEDLINE | ID: mdl-35285253

ABSTRACT

Background: To explore advanced glycation end products (AGEs)-induced m6A modification in fibroblasts and its potential role in photoaging. Methods: We studied m6A modification in AGEs-bovine serum albumin-treated fibroblasts with m6A-mRNA & lncRNA epitranscriptomic microarray and bioinformatics analysis. The m6A modification level was also investigated in skin samples. Results: m6A methylation microarray analysis revealed m6A modification profiles in AGEs-treated fibroblasts. Gene ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction and competing endogenous RNA network analysis indicated that the genes of differentially methylated mRNAs and lncRNAs were mainly related to inflammation processes. We also found that AGEs-bovine serum albumin dose-dependently increased the m6A level and METTL14 expression in both fibroblasts and sun-exposed skin. Conclusion: Our study provided novel information regarding alterations of m6A modifications in AGEs-induced dermal fibroblasts and potential targets for treatment of photoaging.


Subject(s)
Glycation End Products, Advanced , RNA, Long Noncoding , Skin Aging , Fibroblasts/metabolism , Glycation End Products, Advanced/metabolism , Humans , Methyltransferases , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , Serum Albumin, Bovine/metabolism , Skin/metabolism
20.
J Appl Microbiol ; 132(2): 907-918, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34347910

ABSTRACT

AIMS: The potential of gallnut tannin (GT) and Lactobacillus plantarum (LP) on fermentation characteristics, in vitro ruminal methane (CH4 ) production and microbiota of alfalfa silage was investigated. METHODS AND RESULTS: Alfalfa was ensiled with GT (20 and 50 g kg-1 dry matter [DM]) and LP (3 × 108  CFU per gram fresh matter) alone or in combination for 60 days. The GT and LP alone or in combination decreased DM losses, pH and non-protein nitrogen contents of alfalfa silage. All additive treatments decreased ruminal CH4 production, and increased propionic acid molar proportions and Fibrobacter succinogenes numbers. The LP treatment increased nutrient degradation, cellobiase, pectinase and protease activities, and Prevotella ruminicola abundance, whereas high-dose GT treatment inhibited these variables. Importantly, LP together with GT alleviated the adverse effects of high-dose GT supply alone by enhancing pectinase and protease activities as well as Rumincoccus flavefaciens and P. ruminicola growth. CONCLUSIONS: Combination of GT and LP can be used as an efficient additive to improve silage quality and utilization by ruminants. SIGNIFICANCE AND IMPACT OF THE STUDY: Using GT-LP combination has practical implications, particularly concerning effects of tannins on ruminal CH4 mitigation, which may alleviate inhibitory effects of tannins on feed digestion through modulating ruminal microbiota.


Subject(s)
Lactobacillus plantarum , Microbiota , Animals , Fermentation , Medicago sativa , Methane/metabolism , Rumen/metabolism , Silage/analysis , Tannins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...