Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 14(3): 492-507, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38197697

ABSTRACT

DNA amplifications in cancer do not only harbor oncogenes. We sought to determine whether passenger coamplifications could create collateral therapeutic vulnerabilities. Through an analysis of >3,000 cancer genomes followed by the interrogation of CRISPR-Cas9 loss-of-function screens across >700 cancer cell lines, we determined that passenger coamplifications are accompanied by distinct dependency profiles. In a proof-of-principle study, we demonstrate that the coamplification of the bona fide passenger gene DEAD-Box Helicase 1 (DDX1) creates an increased dependency on the mTOR pathway. Interaction proteomics identified tricarboxylic acid (TCA) cycle components as previously unrecognized DDX1 interaction partners. Live-cell metabolomics highlighted that this interaction could impair TCA activity, which in turn resulted in enhanced mTORC1 activity. Consequently, genetic and pharmacologic disruption of mTORC1 resulted in pronounced cell death in vitro and in vivo. Thus, structurally linked coamplification of a passenger gene and an oncogene can result in collateral vulnerabilities. SIGNIFICANCE: We demonstrate that coamplification of passenger genes, which were largely neglected in cancer biology in the past, can create distinct cancer dependencies. Because passenger coamplifications are frequent in cancer, this principle has the potential to expand target discovery in oncology. This article is featured in Selected Articles from This Issue, p. 384.


Subject(s)
Neoplasms , Oncogenes , Humans , Neoplasms/genetics , Medical Oncology , Cell Death , Mechanistic Target of Rapamycin Complex 1/genetics
2.
Mol Cancer Ther ; 23(4): 507-519, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38159110

ABSTRACT

The small-molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical antitumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger antitumor effects than some standard-of-care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical antitumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients.


Subject(s)
Antineoplastic Agents , Neoplasms , Child , Humans , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Biomarkers , Cell Line, Tumor
3.
Nat Genet ; 55(5): 880-890, 2023 05.
Article in English | MEDLINE | ID: mdl-37142849

ABSTRACT

Extrachromosomal DNAs (ecDNAs) are common in cancer, but many questions about their origin, structural dynamics and impact on intratumor heterogeneity are still unresolved. Here we describe single-cell extrachromosomal circular DNA and transcriptome sequencing (scEC&T-seq), a method for parallel sequencing of circular DNAs and full-length mRNA from single cells. By applying scEC&T-seq to cancer cells, we describe intercellular differences in ecDNA content while investigating their structural heterogeneity and transcriptional impact. Oncogene-containing ecDNAs were clonally present in cancer cells and drove intercellular oncogene expression differences. In contrast, other small circular DNAs were exclusive to individual cells, indicating differences in their selection and propagation. Intercellular differences in ecDNA structure pointed to circular recombination as a mechanism of ecDNA evolution. These results demonstrate scEC&T-seq as an approach to systematically characterize both small and large circular DNA in cancer cells, which will facilitate the analysis of these DNA elements in cancer and beyond.


Subject(s)
Neoplasms , Transcriptome , Humans , Transcriptome/genetics , DNA , Neoplasms/genetics , Oncogenes , DNA, Circular/genetics
4.
J Biol Chem ; 288(6): 4128-34, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23275378

ABSTRACT

Potassium (K(+)) channels are targets of reactive oxygen species in the aging nervous system. KCNB1 (formerly Kv2.1), a voltage-gated K(+) channel abundantly expressed in the cortex and hippocampus, is oxidized in the brains of aging mice and of the triple transgenic 3xTg-AD mouse model of Alzheimer's disease. KCNB1 oxidation acts to enhance apoptosis in mammalian cell lines, whereas a KCNB1 variant resistant to oxidative modification, C73A-KCNB1, is cytoprotective. Here we investigated the molecular mechanisms through which oxidized KCNB1 channels promote apoptosis. Biochemical evidence showed that oxidized KCNB1 channels, which form oligomers held together by disulfide bridges involving Cys-73, accumulated in the plasma membrane as a result of defective endocytosis. In contrast, C73A-mutant channels, which do not oligomerize, were normally internalized. KCNB1 channels localize in lipid rafts, and their internalization was dynamin 2-dependent. Accordingly, cholesterol supplementation reduced apoptosis promoted by oxidation of KCNB1. In contrast, cholesterol depletion exacerbated apoptotic death in a KCNB1-independent fashion. Inhibition of raft-associating c-Src tyrosine kinase and downstream JNK kinase by pharmacological and molecular means suppressed the pro-apoptotic effect of KCNB1 oxidation. Together, these data suggest that the accumulation of KCNB1 oligomers in the membrane disrupts planar lipid raft integrity and causes apoptosis via activating the c-Src/JNK signaling pathway.


Subject(s)
Aging/metabolism , Apoptosis , MAP Kinase Signaling System , Membrane Microdomains/metabolism , Protein Multimerization , Shab Potassium Channels/metabolism , Aging/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Substitution , Animals , CSK Tyrosine-Protein Kinase , Cell Line, Tumor , Disease Models, Animal , Dynamin II/genetics , Dynamin II/metabolism , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Membrane Microdomains/genetics , Mice , Mice, Transgenic , Mutation, Missense , Oxidation-Reduction , Shab Potassium Channels/genetics , src-Family Kinases/genetics , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...