Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Syst ; 15(5): 475-482.e6, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754367

ABSTRACT

Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial information but require complex, manually tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based spatial transcriptomics that combines deep-learning models for cell segmentation and spot detection with a probabilistic gene decoder to quantify single-cell gene expression accurately. Polaris offers a unifying, turnkey solution for analyzing spatial transcriptomics data from multiplexed error-robust FISH (MERFISH), sequential fluorescence in situ hybridization (seqFISH), or in situ RNA sequencing (ISS) experiments. Polaris is available through the DeepCell software library (https://github.com/vanvalenlab/deepcell-spots) and https://www.deepcell.org.


Subject(s)
Deep Learning , Gene Expression Profiling , In Situ Hybridization, Fluorescence , Transcriptome , In Situ Hybridization, Fluorescence/methods , Transcriptome/genetics , Gene Expression Profiling/methods , Software , Humans , Single-Cell Analysis/methods , Image Processing, Computer-Assisted/methods , Single Molecule Imaging/methods , Animals , Supervised Machine Learning
2.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38569542

ABSTRACT

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Humans , Mice , Colitis/metabolism , Colitis/pathology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , In Situ Hybridization, Fluorescence/methods , Inflammation/metabolism , Inflammation/pathology , Cell Communication , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology
SELECTION OF CITATIONS
SEARCH DETAIL