Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Stimul ; 16(3): 918-926, 2023.
Article in English | MEDLINE | ID: mdl-37245844

ABSTRACT

BACKGROUND: Low-intensity ultrasound is a noninvasive neuromodulation technique with the potential to focally manipulate deep brain activity at millimeter-scale resolution. However, there have been controversies over the direct influence of ultrasound on neurons, due to an indirect auditory activation. Besides, the capacity of ultrasound to stimulate the cerebellum remains underestimated. OBJECTIVE: To validate the direct neuromodulation effects of ultrasound on the cerebellar cortex from both cellular and behavioral levels. METHODS: Two-photon calcium imaging were used to measure the neuronal responses of cerebellar granule cells (GrCs) and Purkinje cells (PCs) to ultrasound application in awake mice. And a mouse model of paroxysmal kinesigenic dyskinesia (PKD), in which direct activation of the cerebellar cortex leads to dyskinetic movements, was used to assess the ultrasound-induced behavioral responses. RESULTS: Low-intensity ultrasound stimulus (0.1 W/cm2) evoked rapidly increased and sustained neural activity in GrCs and PCs at targeted region, while no significant changes in calcium signals were observed responding to off-target stimulus. The efficacy of ultrasonic neuromodulation relies on acoustic dose modified by ultrasonic duration and intensity. In addition, transcranial ultrasound reliably triggered dyskinesia attacks in proline-rich transmembrane protein 2 (Prrt2) mutant mice, suggesting that the intact cerebellar cortex were activated by ultrasound. CONCLUSION: Low-intensity ultrasound directly activates the cerebellar cortex in a dose-dependent manner, and thus serves as a promising tool for cerebellar manipulation.


Subject(s)
Calcium , Cerebellum , Mice , Animals , Cerebellum/diagnostic imaging , Brain , Neurons , Purkinje Cells
2.
Cell Rep ; 36(12): 109743, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34551285

ABSTRACT

Paroxysmal kinesigenic dyskinesia (PKD) is the most common paroxysmal dyskinesia, characterized by recurrent episodes of involuntary movements provoked by sudden changes in movement. Proline-rich transmembrane protein 2 (PRRT2) has been identified as the major causative gene for PKD. Here, we report that PRRT2 deficiency facilitates the induction of cerebellar spreading depolarization (SD) and inhibition of cerebellar SD prevents the occurrence of dyskinetic movements. Using Ca2+ imaging, we show that cerebellar SD depolarizes a large population of cerebellar granule cells and Purkinje cells in Prrt2-deficient mice. Electrophysiological recordings further reveal that cerebellar SD blocks Purkinje cell spiking and disturbs neuronal firing of the deep cerebellar nuclei (DCN). The resultant aberrant firing patterns in DCN are tightly, temporally coupled to dyskinetic episodes in Prrt2-deficient mice. Cumulatively, our findings uncover a pivotal role of cerebellar SD in paroxysmal dyskinesia, providing a potent target for treating PRRT2-related paroxysmal disorders.


Subject(s)
Cerebellum/physiology , Dystonia/pathology , Membrane Proteins/genetics , Action Potentials/drug effects , Animals , Calcium/metabolism , Dystonia/metabolism , Electrocorticography , In Vitro Techniques , Male , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/physiology , Patch-Clamp Techniques , Potassium Chloride/pharmacology , Purkinje Cells/physiology , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/metabolism
3.
Biochem Biophys Res Commun ; 487(3): 517-524, 2017 06 03.
Article in English | MEDLINE | ID: mdl-28412354

ABSTRACT

Several studies have implicated estrogen and the estrogen receptor (ER) in the pathogenesis of benign prostatic hyperplasia (BPH); however, the mechanism underlying this effect remains elusive. In the present study, we demonstrated that estrogen (17ß-estradiol, or E2)-induced activation of the G protein-coupled receptor 30 (GPR30) triggered Ca2+ release from the endoplasmic reticulum, increased the mitochondrial Ca2+ concentration, and thus induced prostate epithelial cell (PEC) apoptosis. Both E2 and the GPR30-specific agonist G1 induced a transient intracellular Ca2+ release in PECs via the phospholipase C (PLC)-inositol 1, 4, 5-triphosphate (IP3) pathway, and this was abolished by treatment with the GPR30 antagonist G15. The release of cytochrome c and activation of caspase-3 in response to GPR30 activation were observed. Data generated from the analysis of animal models and human clinical samples indicate that treatment with the GPR30 agonist relieves testosterone propionate (TP)-induced prostatic epithelial hyperplasia, and that the abundance of GPR30 is negatively associated with prostate volume. On the basis of these results, we propose a novel regulatory mechanism whereby estrogen induces the apoptosis of PECs via GPR30 activation. Inhibition of this activation is predicted to lead to abnormal PEC accumulation, and to thereby contribute to BPH pathogenesis.


Subject(s)
Apoptosis/drug effects , Estrogens/pharmacology , Prostate/drug effects , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/pathology , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Benzodioxoles/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dogs , Dose-Response Relationship, Drug , Humans , Male , Mice , Prostate/cytology , Prostatic Hyperplasia/metabolism , Quinolines/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL