Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Expert Rev Proteomics ; 21(1-3): 99-113, 2024.
Article in English | MEDLINE | ID: mdl-38300624

ABSTRACT

INTRODUCTION: Cell-surface proteins are extremely important for many cellular events, such as regulating cell-cell communication and cell-matrix interactions. Aberrant alterations in surface protein expression, modification (especially glycosylation), and interactions are directly related to human diseases. Systematic investigation of surface proteins advances our understanding of protein functions, cellular activities, and disease mechanisms, which will lead to identifying surface proteins as disease biomarkers and drug targets. AREAS COVERED: In this review, we summarize mass spectrometry (MS)-based proteomics methods for global analysis of cell-surface proteins. Then, investigations of the dynamics of surface proteins are discussed. Furthermore, we summarize the studies for the surfaceome interaction networks. Additionally, biological applications of MS-based surfaceome analysis are included, particularly highlighting the significance in biomarker identification, drug development, and immunotherapies. EXPERT OPINION: Modern MS-based proteomics provides an opportunity to systematically characterize proteins. However, due to the complexity of cell-surface proteins, the labor-intensive workflow, and the limit of clinical samples, comprehensive characterization of the surfaceome remains extraordinarily challenging, especially in clinical studies. Developing and optimizing surfaceome enrichment methods and utilizing automated sample preparation workflow can expand the applications of surfaceome analysis and deepen our understanding of the functions of cell-surface proteins.


The cell surface contains many important proteins such as receptors and transporters. These proteins are responsible for cells to communicate with each other, take nutrients from outside, and interact with their surroundings. Aberrant changes in surface protein expression, modifications, and interactions with other molecules directly result in various diseases, including infections, immune disorders, and cancer. Currently, mass spectrometry (MS)-based proteomics is very powerful to study proteins on a large scale, and there has been a strong interest in employing MS to investigate cell-surface proteins. In this review, we discuss different methods combining mass spectrometry with other approaches to systematically characterize protein abundance, dynamics, modification, and interaction on the cell surface. These methods help uncover protein functions and specific cell-surface proteins related to human diseases. A better understanding of the functions and properties of cell-surface proteins can facilitate the discovery of surface proteins as effective biomarkers for disease early detection and the identification of drug targets for disease treatment.


Subject(s)
Membrane Proteins , Protein Processing, Post-Translational , Humans , Mass Spectrometry/methods , Membrane Proteins/metabolism , Glycosylation
2.
Angew Chem Int Ed Engl ; 63(6): e202315286, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38117010

ABSTRACT

The N-termini of proteins can regulate their degradation, and the same protein with different N-termini may have distinct dynamics. Recently, it was found that N-terminal glycine can serve as a degron recognized by two E3 ligases, but N-terminal glycine was also reported to stabilize proteins. Here we developed a chemoenzymatic method for selective enrichment of proteoforms with N-terminal glycine and integrated dual protease cleavage to further improve the enrichment specificity. Over 2000 unique peptides with protein N-terminal glycine were analyzed from >1000 proteins, and most of them are previously unknown, indicating the effectiveness of the current method to capture low-abundance proteoforms with N-terminal glycine. The degradation rates of proteoforms with N-terminal glycine were quantified along with those of proteins from the whole proteome. Bioinformatic analyses reveal that proteoforms with N-terminal glycine with the fastest and slowest degradation rates have different functions and localizations. Membrane proteins with N-terminal glycine and proteins with N-terminal glycine from the N-terminal methionine excision degrade more rapidly. Furthermore, the secondary structures, adjacent amino acid residues, and protease specificities for N-terminal glycine are also vital for protein degradation. The results advance our understanding of the effects of N-terminal glycine on protein properties and functions.


Subject(s)
Amino Acids , Glycine , Glycine/metabolism , Proteolysis , Amino Acids/metabolism , Peptide Hydrolases/metabolism , Proteome/metabolism , Protein Stability , Protein Processing, Post-Translational
4.
Cell Rep ; 42(7): 112796, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37453062

ABSTRACT

The subcellular localization of proteins is critical for their functions in eukaryotic cells and is tightly correlated with protein modifications. Here, we comprehensively investigate the nuclear-cytoplasmic distributions of the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins to dissect the correlation between protein distribution and modifications. Phosphorylated and O-GlcNAcylated proteins have overall higher nuclear distributions than non-modified ones. Different distributions among the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins are associated with protein size, structure, and function, as well as local environment and adjacent residues around modification sites. Moreover, we perform site-mutagenesis experiments using phosphomimetic and phospho-null mutants of two proteins to validate the proteomic results. Additionally, the effects of the OGT/OGA inhibition on glycoprotein distribution are systematically investigated, and the distribution changes of glycoproteins are related to their abundance changes under the inhibitions. Systematic investigation of the relationship between protein modification and localization advances our understanding of protein functions.


Subject(s)
Protein Processing, Post-Translational , Proteomics , Phosphorylation , Proteomics/methods , Glycoproteins/metabolism , Cell Nucleus/metabolism , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/metabolism
5.
PNAS Nexus ; 2(6): pgad168, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37275259

ABSTRACT

Manipulation of protein synthesis is commonly applied to uncover protein functions and cellular activities. Multiple inhibitors with distinct mechanisms have been widely investigated and employed in bio-related research, but it is extraordinarily challenging to measure and evaluate the synthesis inhibition efficiencies of individual proteins by different inhibitors at the proteome level. Newly synthesized proteins are the immediate and direct products of protein synthesis, and thus their comprehensive quantification provides a unique opportunity to study protein inhibition. Here, we systematically investigate protein inhibition and evaluate different popular inhibitors, i.e. cycloheximide, puromycin, and anisomycin, through global quantification of newly synthesized proteins in several types of human cells (A549, MCF-7, Jurkat, and THP-1 cells). The inhibition efficiencies of protein synthesis are comprehensively measured by integrating azidohomoalanine-based protein labeling, selective enrichment, a boosting approach, and multiplexed proteomics. The same inhibitor results in dramatic variation of the synthesis inhibition efficiencies for different proteins in the same cells, and each inhibitor exhibits unique preferences. Besides cell type- and inhibitor-specific effects, some universal rules are unraveled. For instance, nucleolar and ribosomal proteins have relatively higher inhibition efficiencies in every type of cells treated with each inhibitor. Moreover, proteins intrinsically resistant or sensitive to the inhibition are identified and found to have distinct functions. Systematic investigation of protein synthesis inhibition in several types of human cells by different inhibitors provides valuable information about the inhibition of protein synthesis, advancing our understanding of inhibiting protein synthesis.

6.
J Proteome Res ; 22(6): 1571-1588, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37010087

ABSTRACT

Glycosylation is one of the most common and important protein modifications, and it regulates the properties and functions of a wide range of proteins. Aberrant glycosylation is directly related to human diseases. Recently, with the advancement of mass spectrometry (MS) instrumentation and MS-based glycoproteomic methods, global characterization of glycoproteins in complex biological samples has become possible. Using quantitative proteomics, the abundance of glycoproteins in different samples can be quantified, which provides a wealth of information to further our understanding of protein functions, cellular activities, and the molecular mechanisms of diseases. In this review, we discuss quantitative proteomic methods used for comprehensive analysis of protein glycosylation, and cover the applications of quantitative glycoproteomics to unveil the properties and functions of glycoproteins and their association with various diseases. It is expected that quantitative proteomic methods will be extensively applied to explore the role of protein glycosylation in complex biological systems, and to identify glycoproteins as biomarkers for disease detection and as therapeutic targets for disease treatment.


Subject(s)
Glycoproteins , Proteomics , Humans , Proteomics/methods , Glycoproteins/metabolism , Glycosylation , Protein Processing, Post-Translational , Mass Spectrometry/methods
7.
Anal Chem ; 95(9): 4371-4380, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36802545

ABSTRACT

Protein O-GlcNAcylation plays extremely important roles in mammalian cells, regulating signal transduction and gene expression. This modification can happen during protein translation, and systematic and site-specific analysis of protein co-translational O-GlcNAcylation can advance our understanding of this important modification. However, it is extraordinarily challenging because normally O-GlcNAcylated proteins are very low abundant and the abundances of co-translational ones are even much lower. Here, we developed a method integrating selective enrichment, a boosting approach, and multiplexed proteomics to globally and site-specifically characterize protein co-translational O-GlcNAcylation. The boosting approach using the TMT labeling dramatically enhances the detection of co-translational glycopeptides with low abundance when enriched O-GlcNAcylated peptides from cells with a much longer labeling time was used as a boosting sample. More than 180 co-translational O-GlcNAcylated proteins were site-specifically identified. Further analyses revealed that among co-translational glycoproteins, those related to DNA binding and transcription are highly overrepresented using the total identified O-GlcNAcylated proteins in the same cells as the background. Compared with the glycosylation sites on all glycoproteins, co-translational sites have different local structures and adjacent amino acid residues. Overall, an integrative method was developed to identify protein co-translational O-GlcNAcylation, which is very useful to advance our understanding of this important modification.


Subject(s)
Peptides , Protein Processing, Post-Translational , Animals , Glycosylation , Peptides/metabolism , Glycoproteins/metabolism , Acetylglucosamine/chemistry , Mammals/metabolism
8.
Cell Rep ; 39(11): 110946, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35705054

ABSTRACT

Protein O-GlcNAcylation plays critical roles in many cellular events, and its dysregulation is related to multiple diseases. Integrating bioorthogonal chemistry and multiplexed proteomics, we systematically and site specifically study the distributions and dynamics of protein O-GlcNAcylation in the nucleus and the cytoplasm of human cells. The results demonstrate that O-GlcNAcylated proteins with different functions have distinct distribution patterns. The distributions vary site specifically, indicating that different glycoforms of the same protein may have different distributions. Moreover, we comprehensively analyze the dynamics of O-GlcNAcylated and non-modified proteins in these two compartments, respectively, and the half-lives of glycoproteins in different compartments are markedly different, with the median half-life in the cytoplasm being much longer. In addition, glycoproteins in the nucleus are more dramatically stabilized than those in the cytoplasm under the O-GlcNAcase inhibition. The comprehensive spatial and temporal analyses of protein O-GlcNAcylation provide valuable information and advance our understanding of this important modification.


Subject(s)
Acetylglucosamine , Glycoproteins , Proteomics , Acetylglucosamine/metabolism , Cytoplasm/metabolism , Glycoproteins/metabolism , Glycosylation , Humans , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational , Proteomics/methods
9.
Anal Chem ; 94(7): 3343-3351, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35132862

ABSTRACT

Glycoproteins with diverse glycans are essential to human cells, and subtle differences in glycan structures may result in entirely different functions. One typical example is proteins modified with O-linked ß-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc) (the Tn antigen), in which the two glycans have very similar structures and identical chemical compositions, making them extraordinarily challenging to be distinguished. Here, we developed an effective method benefiting from selective enrichment and the enzymatic specificity to simultaneously identify and distinguish glycoproteins with O-GlcNAc and O-GalNAc. Metabolic labeling was combined with bioorthogonal chemistry for enriching glycoproteins modified with O-GlcNAc and O-GalNAc. Then, the enzymatic reaction with galactose oxidase was utilized to specifically oxidize O-GalNAc, but not O-GlcNAc, generating the different tags between glycopeptides with O-GlcNAc and O-GalNAc that can be easily distinguishable by mass spectrometry (MS). Among O-GlcNAcylated proteins commonly identified in three types of human cells, those related to transcription and RNA binding are highly enriched. Cell-specific features are also revealed. Among glycoproteins exclusively in Jurkat cells, those involved in human T-lymphotropic virus type 1 (HTLV-1) infection are overrepresented, which is consistent with the cell line source and suggests that protein O-GlcNAcylation participated in the response to the virus infection. Furthermore, glycoproteins with the Tn antigen have different subcellular distributions in different cells, which may be attributed to the distinct mechanisms for the formation of protein O-GalNAcylation.


Subject(s)
Acetylgalactosamine , Neoplasms , Antigens, Tumor-Associated, Carbohydrate , Glycoproteins/chemistry , Humans , Mass Spectrometry/methods
10.
Mol Omics ; 17(2): 186-196, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33687411

ABSTRACT

Protein O-GlcNAcylation refers to the covalent binding of a single N-acetylglucosamine (GlcNAc) to the serine or threonine residue. This modification primarily occurs on proteins in the nucleus and the cytosol, and plays critical roles in many cellular events, including regulation of gene expression and signal transduction. Aberrant protein O-GlcNAcylation is directly related to human diseases such as cancers, diabetes and neurodegenerative diseases. In the past decades, considerable progress has been made for global and site-specific analysis of O-GlcNAcylation in complex biological samples using mass spectrometry (MS)-based proteomics. In this review, we summarized previous efforts on comprehensive investigation of protein O-GlcNAcylation by MS. Specifically, the review is focused on methods for enriching and site-specifically mapping O-GlcNAcylated peptides, and applications for quantifying protein O-GlcNAcylation in different biological systems. As O-GlcNAcylation is an important protein modification for cell survival, effective methods are essential for advancing our understanding of glycoprotein functions and cellular events.


Subject(s)
Acetylglucosamine/genetics , N-Acetylglucosaminyltransferases/genetics , Protein Processing, Post-Translational/genetics , Proteome/genetics , Gene Expression Regulation/genetics , Glycoproteins/genetics , Humans , Proteomics/trends , Signal Transduction/genetics , Tandem Mass Spectrometry
11.
Anal Chem ; 92(14): 9807-9814, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32574038

ABSTRACT

O-GlcNAcylation has gradually been recognized as a critically important protein post-translational modification in mammalian cells. Besides regulation of gene expression, its crosstalk with protein phosphorylation is vital for cell signaling. Despite its importance, comprehensive analysis of O-GlcNAcylation is extraordinarily challenging due to the low abundances of many O-GlcNAcylated proteins and the complexity of biological samples. Here, we developed a novel chemoenzymatic method based on a wild-type galactosyltransferase and uridine diphosphate galactose (UDP-Gal) for global and site-specific analysis of protein O-GlcNAcylation. This method integrates enzymatic reactions and hydrazide chemistry to enrich O-GlcNAcylated peptides. All reagents used are more easily accessible and cost-effective as compared to the engineered enzyme and click chemistry reagents. Biological triplicate experiments were performed to validate the effectiveness and the reproducibility of this method, and the results are comparable with the previous chemoenzymatic method using the engineered enzyme and click chemistry. Moreover, because of the promiscuity of the galactosyltransferase, 18 unique O-glucosylated peptides were identified on the EGF domain from nine proteins. Considering that effective and approachable methods are critical to advance glycoscience research, the current method without any sample restrictions can be widely applied for global analysis of protein O-GlcNAcylation in different samples.


Subject(s)
Acetylglucosamine/chemistry , Peptides/metabolism , Protein Processing, Post-Translational , Glycosylation , Humans , MCF-7 Cells , Peptides/chemistry , Protein Conformation , Protein Engineering
12.
Org Biomol Chem ; 14(48): 11389-11395, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27858035

ABSTRACT

α-Bromo ketones are versatile intermediates of high practical utility. Traditional approaches to these compounds are restricted to a relatively hazardous/complex reagent combination, a long reaction time, the use of non-environmentally friendly solvents, or a limited substrate scope. Herein, we describe the development of a new methodology for the preparation of α-bromo ketones from alkenes using 1,3-dibromo-5,5-dimethylhydantoin (DBH) as a bromine source and an oxidant simultaneously. This easy to carry out two-step one-pot protocol proceeds in water and provides high yield of a great variety of α-bromo ketones. Addition of an amine to the intermediate α-bromo ketone further enables the preparation of α-amino ketones in a one-pot sequence.

13.
Org Lett ; 18(20): 5400-5403, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27723359

ABSTRACT

Apratoxin E provided the inspiration for the design of apratoxin A/E hybrids under preclinical development. Through total synthesis using two different strategies, it was determined that the originally proposed configuration of the thiazoline at C30 is opposite from that in apratoxin A, in contrast to previous assumptions on biosynthetic grounds. The epimer and true natural apratoxin E were synthesized, and the biological activities were evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL
...