Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 15: 1326434, 2024.
Article in English | MEDLINE | ID: mdl-38716069

ABSTRACT

Background: Periodontitis and benign prostatic hyperplasia (BPH) are all common chronic diseases with higher incidence in middle-aged and old men. Several studies have indicated a potential association between periodontitis and BPH, although the findings remain inconclusive. However, there is no mendelian randomization (MR) studies to assess this association. Methods: The 40 men who had received health check-ups were included in an epidemiological study. Genetic data of BPH (13118 cases and 72799 controls) and periodontitis (3046 cases and 195395 controls) from FinnGen project was used to perform two-sample MR analysis. The inverse-variance weighted (IVW) model was identified as the primary analytical method, with MR Egger, weighted median, simple mode, and weighted mode serving as additional approaches. Results: The epidemiological analysis demonstrated a lack of statistically significant differences in the prevalence of clinical BPH between severe periodontitis group and non-severe periodontitis group. Similarly, no statistically significant differences were found in the prevalence of severe periodontitis among individuals with clinical BPH compared to those without. Additionally, Among the five models utilized in MR analysis, including the IVW model, no evidence of a causal link between periodontitis and BPH was observed. Conclusion: The findings from our epidemiological investigation and MR analysis do not provide support for a causal relationship between periodontitis and BPH.

2.
ACS Biomater Sci Eng ; 10(4): 2463-2476, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38445948

ABSTRACT

The challenges in the treatment of extensive bone defects are infection control and bone regeneration. Bone tissue engineering is currently one of the most promising strategies. In this study, a short biopeptide with specific osteogenic ability is designed by fusion peptide technology and encapsulated with chitosan-modified poly(lactic acid-glycolic acid) (PLGA) microspheres. The fusion peptide (FP) mainly consists of an osteogenic functional sequence (P-15) and a bone-specific binding sequence (Asp-6), which can regulate bone formation accurately and efficiently. Chitosan-modified PLGA with antimicrobial and pro-healing effects is used to achieve the sustained release of fusion peptides. In the early stage, the antimicrobial and soft tissue healing effects can stop the wound infection as soon as possible, which is relevant for the subsequent bone regeneration process. Our data show that CS-PLGA@FP microspheres have antibacterial and pro-cell migration effects in vitro and excellent pro-wound-healing effects in vivo. In addition, CS-PLGA@FP microspheres promote the expression of osteogenic-related factors and show excellent bone regeneration in a rat defect model. Therefore, CS-PLGA@FP microspheres are an efficient biomaterial that can accelerate the recovery of bone defects.


Subject(s)
Anti-Infective Agents , Chitosan , Rats , Animals , Polylactic Acid-Polyglycolic Acid Copolymer , Polyglycolic Acid , Lactic Acid/pharmacology , Microspheres , Peptides/pharmacology
3.
iScience ; 26(11): 108212, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37965149

ABSTRACT

Dental implants make it possible to replace teeth in more sophisticated ways. Nevertheless, peri-implantitis is one of the leading causes of implant failure, which can be avoided with proper soft tissue sealing. The aim of this study was to achieve the promotion of the synthesis of peri-implant epithelial hemidesmosome through Histatin 1 and porcine small intestinal submucosa (SIS) hydrogel to form a good peri-implant seal. The results show that hydrogel can improve the biological barrier function around implants by combining antibacterial, promoting soft tissue healing and promoting epithelial bonding. This means that the morphology and anti-infection ability of soft tissue are enhanced, which ensures the long-term stability of the implant.SIS-Hst1 hydrogel has certain clinical application in the prevention and early treatment of peri-implantitis. In conclusion, Hst1-SIS hydrogel, as a local administration system, provides experimental evidence for the prevention of peri-implant disease.

4.
Adv Healthc Mater ; 12(25): e2300560, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562069

ABSTRACT

Restoring bone homeostasis is the key to the treatment of osteoporosis. How to increase osteogenic ability or inhibit osteoclast activity has always been a topic of great concern. In recent years, short peptides with biological activity have received great attention in bone repair. However, the application of short peptides is still limited due to the lack of a stable and targeted delivery system. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles modified by alendronate (AL) to transport osteogenic peptides (OGP) (AL-PLGA@P NPs) are designed. Benefiting from the high affinity of AL for hydroxyapatite, AL-PLGA@P NPs have the ability to target bone. In this delivery system, OGP that promotes osteogenesis synergizes with AL, which inhibits osteoclasts, to regulate bone homeostasis, which gives them more advantages in the treatment of osteoporosis. The data shows that nanoparticles can selectively deliver peptides to the bone surface without systemic toxicity. Moreover, nanoparticles can upregulate osteogenesis-related factors (ALP, Runx-2, and BMP2) and downregulate osteoclast-related factors (TRAP and CTSK) in vitro. With AL-PLGA@P NPs, bone microarchitecture and bone mass are improved in ovariectomized osteoporosis rats. Therefore, this study proposes a novel osteoporosis-based drug system that effectively improves bone density.

6.
Biomater Res ; 26(1): 89, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575503

ABSTRACT

BACKGROUND: Exosomes derived from bone marrow mesenchymal stem cells (BMSC-exos) have been shown triggering osteogenic differentiation and mineralization of MSCs, but exosomes administered via bolus injections are rapidly sequestered and cleared. Therefore, we considered the implant as a new organ of patient's body and expected to find a method to treat implant with BMSC-exos in vivo directly. METHODS: A fusion peptide (PEP), as a drug delivery system (DDS) which contained a titanium-binding peptide (TBP) possessing the ability to selectively bind to the titanium surface and another peptide CP05 being able to capture exosomes expertly, is constructed to modify the titanium surface. RESULTS: Both in vitro and in vivo experiments prove PEP retains the ability to bind titanium and exosome simultaneously, and the DDS gain the ability to target exosomes to titanium implants surface following enhancing osseointegration post-implantation. Moreover, the DDS constructed by exosomes of diverse origins shows the similar combination rate and efficiency of therapy. CONCLUSION: This drug delivery system demonstrates the concept that EXO-PEP system can offer an accurate and efficient therapy for treating implants with long-term effect.

7.
Biomater Adv ; 142: 213158, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36288629

ABSTRACT

Bacteria are recognized as the driving factors of periodontitis. However, excessive reactive oxygen species (ROS) can harm periodontal tissue while also causing an uncontrolled inflammatory response. Hence, eliminating excessive ROS and blocking ROS-induced abnormal inflammatory response by antioxidants are achieving remarkable results in periodontitis therapy. Moreover, influenced by the deep and irregular periodontal pockets, injectable thermo-sensitive chitosan-based hydrogels have attracted a lot of attention. This study aimed to formulate an antibacterial and antioxidant therapeutic regimen by incorporating antimicrobial peptides (Nal-P-113) and/or antioxidants (polydopamine nanoparticles, PDNPs) into chitosan-based hydrogels. The hydrogel was characterized in vitro and finally examined in rats using the experimental periodontitis model. The release kinetics showed that the hydrogel could stably release Nal-P-113 and PDNPs for up to 13 days. The scavenging activity of the hydrogel against DPPH was about 80 % and the antibacterial ratio against Streptococcus gordonii (S. gordonii), Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis) was about 99 %. Importantly, it was examined that the hydrogel had the ability to prevent periodontal tissue damage. Thus, chitosan-based hydrogels may provide a basis for designing multifunctional local drug delivery biomaterials for the treatment of periodontitis.


Subject(s)
Chitosan , Periodontitis , Rats , Animals , Chitosan/chemistry , Hydrogels/chemistry , Antioxidants/pharmacology , Reactive Oxygen Species/therapeutic use , Periodontitis/drug therapy , Porphyromonas gingivalis/physiology , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...