Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 190: 108924, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39111169

ABSTRACT

Exposure to persistent organic pollutants (POPs) may contribute to colorectal cancer risk, but the underlying mechanisms of crucial POPs exposure remain unclear. Hence, we systematically investigated the associations among POPs exposure, genetics and epigenetics and their effects on colorectal cancer. A case-control study was conducted in the Chinese population for detecting POPs levels. We measured the concentrations of 24 POPs in the plasma using gas chromatography-tandem mass spectrometry (GC-MS/MS) and evaluated the clinical significance of POPs by calculating the area under the receiver operating characteristic curve (AUC). To assess the associations between candidate genetic variants and colorectal cancer risk, unconditional logistic regression was used. Compared with healthy control individuals, individuals with colorectal cancer exhibited higher concentrations of the majority of POPs. Exposure to PCB153 was positively associated with colorectal cancer risk, and PCB153 demonstrated superior accuracy (AUC=0.72) for predicting colorectal cancer compared to other analytes. On PCB153-related genes, the rs67734009 C allele was significantly associated with reduced colorectal cancer risk and lower plasma levels of PCB153. Moreover, rs67734009 exhibited an expression quantitative trait locus (eQTL) effect on ESR1, of which the expression level was negatively related to PCB153 concentration. Mechanistically, the risk allele of rs67734009 increased ESR1 expression via miR-3492 binding and m6A modification. Collectively, this study sheds light on potential genetic and epigenetic mechanisms linking PCB153 exposure and colorectal cancer risk, thereby providing insight into the accurate protection against POPs exposure.

2.
Environ Int ; 184: 108443, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38277997

ABSTRACT

Environmental pollutants known as polycyclic aromatic hydrocarbons (PAHs) are produced through the incomplete combustion of organic material. While PAHs have been investigated as genotoxicants, they can also operate through nongenotoxic pathways in estrogen-dependent malignancies, such as breast, cervical and ovarian cancer. However, whether PAHs induce colorectal cancer (CRC) risk through estrogenic effects is still illusive. Here, we systematically investigated the abnormal expression and activation of estrogen receptor beta (ERß) regulated by PAHs in CRC as well as the underlying mechanisms of ERß-mediated CRC risk. Based on the 300 plasma samples from CRC patients and healthy controls detected by GC-MS/MS, we found that the plasma concentrations of benzo[a]pyrene (BaP) were significantly higher in CRC cases than in healthy controls, with significant estrogenic effects. Moreover, histone deacetylase 2 (HDAC2)-induced deacetylation of the promoter decreases ERß expression, which is associated with poor overall survival and advanced tumor stage. The study also revealed that BaP and estradiol (E2) had different carcinogenic effects, with BaP promoting cell proliferation and inhibiting apoptosis, while E2 had the opposite effects. Additionally, this study mapped ERß genomic binding regions by performing ChIP-seq and ATAC-seq and identified genetic variants of rs1411680 and its high linkage disequilibrium SNP rs6477937, which were significantly associated with CRC risk through meta-analysis of two independent Chinese population genome-wide association studies comprising 2,248 cases and 3,173 controls and then validation in a large-scale European population. By integrating data from functional genomics, we validated the regulatory effect of rs6477937 as an ERß binding-disrupting SNP that mediated allele-specific expression of LINC02977 in a long-range chromosomal interaction manner, which was found to be highly expressed in CRC tissues. Overall, this study suggests that the different active effects on ERß by PAHs and endogenous E2 may play a crucial role in the development and progression of CRC and highlights the potential of targeting ERß and its downstream targets for CRC prevention and treatment.


Subject(s)
Colorectal Neoplasms , Polycyclic Aromatic Hydrocarbons , Humans , Estrogen Receptor beta/genetics , Benzo(a)pyrene/toxicity , Genome-Wide Association Study , Tandem Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Estrogens , Colorectal Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL