Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729918

ABSTRACT

Hydrogels are considered as a potential cartilage replacement material based on their structure being similar to natural cartilage, which are of great significance in repairing cartilage defects. However, it is difficult for the existing hydrogels to combine the high load bearing and low friction properties (37 °C) of cartilage through sample methods. Herein, we report a facile and new fabrication strategy to construct the PNIPAm/EYL hydrogel by using the macrophase separation of supersaturated N-isopropylacrylamide (NIPAm) monomer solution to promote the formation of liposomes from egg yolk lecithin (EYL) and asymmetric template method. The PNIPAm/EYL hydrogels possess a relatively high compressive strength (more than 12 MPa), fracture energy (9820 J/m2), good fatigue resistance, lubricating properties, and excellent biocompatibility. Compared with the PNIPAm hydrogel, the friction coefficient (COF 0.046) of PNIPAm/EYL hydrogel is reduced by 50%. More importantly, the COF (0.056) of PNIPAm/EYL hydrogel above lower critical solution temperature (LCST) does not increase significantly, exhibiting heat-tolerant lubricity. The finite element analysis further proves that PNIPAm/EYL hydrogel can effectively disperse the applied stress and dissipate energy under load conditions. This work not only provides new insights for the design of high-strength lubricating hydrogels but also lays a foundation for the treatment of cartilage injury as a substitute material.

2.
Angew Chem Int Ed Engl ; : e202407510, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774971

ABSTRACT

Plastic pollution is an emerging global threat due to lack of effective methods for transforming waste plastics into useful resources. Here, we demonstrate a direct oxidative upcycling of polyethylene into high-value and high-volume long chain (C10-C20) saturated dicarboxylic acids in high carbon yield of 85.9% over cobalt-doped MCM-41 molecular sieves, in the absence of any solvent or precious metal catalyst. The distribution of the dicarboxylic acids can be controllably adjusted from short-chain (C4-C10) to long-chain ones (C10-C20) through changing cobalt loading of MCM-41 under nanoconfinement. Highly and sparsely dispersed cobalt along with confined space of mesoporous structure enables complete degradation of polyethylene and high selectivity of dicarboxylic acid in mild condition. So far, this is the first report on highly selective one-step preparation of long chain dicarboxylic acids. The approach provides an attractive solution to tackle plastic pollution and a promising alternative route to long chain diacids.

3.
Nat Commun ; 15(1): 4498, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802467

ABSTRACT

Recycling strategies for mixed plastics and textile blends currently aim for recycling only one of the components. Here, we demonstrate a water coupling strategy to co-hydrolyze polyester/cotton textile blends into polymer monomers and platform chemicals in gamma-valerolactone. The blends display a proclivity for achieving an augmented 5-hydroxymethylfurfural yield relative to the degradation of cotton alone. Controlled experiments and preliminary mechanistic studies underscore that the primary driver behind this heightened conversion rate lies in the internal water circulation. The swelling and dissolving effect of gamma-valerolactone on polyester enables a fast hydrolysis of polyester at much lower concentration of acid than the one in the traditional hydrolysis methods, effectively mitigating the excessive degradation of cotton-derived product and undesirable product formation. In addition, the system is also applicable to different kinds of blends and PET mixed plastics. This strategy develops an attractive path for managing end-of-life textiles in a sustainable and efficient way.

4.
Angew Chem Int Ed Engl ; : e202405912, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655622

ABSTRACT

Although many approaches have been proposed to recycling waste epoxy resin (EP), the separation of mixed degraded products remains a challenge due to their similar structures. To address this, we present a catalytic oxidation strategy that enables mild degradation of EP and in situ separation of degraded products through supramolecular interactions. The oxidative degradation relies on FeIV=O radicals with strong oxidizing properties, which are generated from the electron transfer of FeCl2 with reaction reagents. As the FeIV=O radicals attacked the C-N bonds of EP, EP was broken into fragments rich in active functional groups. Meanwhile, the FeIV=O radicals were reduced to iron ions that can coordinate with the carboxyl groups on the fragments. As a result, the degraded products with different carboxyl content can be effortlessly separated into liquid and solid phase by coordinating with the catalyst. The success of this work lays the foundation for high-value application of degraded products and provides new design ideas for recycling waste plastics with complex compositions.

5.
Chemosphere ; 355: 141738, 2024 May.
Article in English | MEDLINE | ID: mdl-38513955

ABSTRACT

Dye-contaminated water and waste plastic both pose enormous threats to human health and the ecological environment, and simultaneously solving these two issues in a sustainable and resource-saving way is highly important. In this work, a sodium alginate-polyethylene terephthalate-sodium alginate (SA@PET) composite adsorbent for efficient dye removal is fabricated using wasted PET bottle and marine plant-based SA via simple and energy-efficient nonsolvent-induced phase separation (NIPS) method. Benefiting from its porous structure and the abundant binding sites, SA@PET shows an excellent methylene blue (MB) adsorption capacity of 1081 mg g-1. The Redlich-Peterson model more accurately describes the adsorption behavior, suggesting multiple adsorption mechanisms. In addition to the electrostatic attractions of SA to MB, polar interactions between the PET matrix and MB are also identified as adsorption mechanisms. It is worth mentioning that SA@PET could be recycled 7 times without a serious decrease in performance, and the trifluoroacetic acid-dichloromethane solvent involved in the NIPS process has the possibility of reuse and stepwise recovery. Finally, the discarded adsorbent could be completely degraded under mild conditions. This work provides not only a composite adsorbent with excellent cationic dye removal performance for wastewater treatment, but also an upcycling strategy for waste PET.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Alginates/chemistry , Porosity , Water Pollutants, Chemical/analysis , Adsorption , Water Purification/methods , Methylene Blue/chemistry , Kinetics , Hydrogen-Ion Concentration
6.
Adv Mater ; 36(4): e2310779, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990853

ABSTRACT

Thermosetting polyimide (PI) has attracted extensive attention for its excellent properties, but the approaches to its end-of-life management are not sustainable, posing great threat to the ecosystem. Herein, this work proposes a mild, sustainable, and full recovery path for recycling waste carbon fiber reinforced phenylethynyl end-capped PI resin composites. In addition to recycling reaction reagent and woven carbon fiber, degraded products (DPETI) can be fully and directly used as high-performance and sustainable adhesives. DPETI exhibits strong adhesion to various surfaces, with a maximum adhesion strength of 1.84 MPa. Due to the strong supramolecular polymerization behavior without solvent dependence, DPETI demonstrates higher adhesive strength of 2.22 MPa in the extreme environment (-196 °C), which is maintained even after 10 cycles. This work sparks a new thinking for plastic wastes recycling that is to convert unrecyclable wastes into new and sustainable materials, which has the potential to establish new links within circular economies and influence the development of materials science.

7.
Angew Chem Int Ed Engl ; 62(52): e202314448, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37938175

ABSTRACT

A novel in situ chemical upcycling strategy for plastic waste is proposed by the customized diphenylacetylene monomer with dual photo-response. That is, diphenylacetylene reactive monomers are in situ inserted into the macromolecular chain of polyethylene terephthalate (PET) plastics/fibers through one-pot transesterification of slight-depolymerization and re-polymerization. On the one hand, the diphenylacetylene group absorbs short-wave high-energy UV rays and then releases long-wave low-energy harmless fluorescence. On the other hand, the UV-induced photo-crosslinking reaction among diphenylacetylene groups produces extended π-conjugated structure, resulting in a red-shift (due to decreased HOMO-LUMO separation) in the UV absorption band and locked crosslink points between PET chains. Therefore, with increasing UV exposure time, the upcycled PET plastics exhibit reverse enhanced UV resistance and mechanical strength (superior to original performance), instead of serious UV-photodegradation and damaged performance. This upcycling strategy at oligomer-scale not only provides a new idea for traditional plastic recycling, but also solves the common problem of gradual degradation of polymer performance during use.

8.
Mater Horiz ; 10(9): 3694-3701, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37401674

ABSTRACT

Polypropylene waste was upcycled into terminal functionalized long-chain chemicals with the aid of anionic surfactants. The reaction only needs to be heated at 80 °C for 5 min by coupling exothermic oxidative cracking with endothermic thermal cracking. This work opens a new way to rapidly convert plastic waste into high-value-added chemicals under mild conditions.

9.
J Hazard Mater ; 453: 131423, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37080025

ABSTRACT

As one of the largest productions of thermosetting plastics, unsaturated polyester resin (UPR) is difficult to be effectively chemcycled after it is discarded due to its dense network structure. Herein, we demonstrate a mild method for efficient alkaline hydrolysis of UPR into useful feedstocks in mixed solvents of polar aprotic solvent and a small amount of H2O by utilizing the fragmentation effect of the solvent on the UPR and the swelling effect of H2O on the subsequent partially hydrolyzed UPR respectively. The mixed solvents also play a key role in the aggregation and solubility of the degradation products. It is worth noting that the tetrahydrofuran (THF)-H2O system achieved 100 % separation of degradation products in an energy-efficient way taking advantage of the insolubility of the carboxylate-containing products in THF and the low boiling point of THF. The participation of non-reactive mixed solvents greatly promotes both the degradation and the separation process of thermosetting polymers.

10.
Biomacromolecules ; 24(3): 1522-1531, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36757084

ABSTRACT

Mimicking the anisotropic structure and environmental adaptation of organisms in nature remains a key objective in the field of hydrogels. However, it has been very challenging due to complex fabrication and confined application only in water. Here, we demonstrate a new strategy of spontaneous fabrication of an anisotropic hydrogel based on our finding in the tropic movement of gelatin toward the Teflon template. The obtained hydrogel exhibits fast response and recovery under temperature stimuli both in aqueous and non-aqueous environments, making use of the approximate transition temperature and opposite phase transition behavior of gelatin and poly(N-isopropylacrylamide) (PNIPAm). Its recovery performance in water is more than 50 times faster than that of the PNIPAm hydrogel. Furthermore, the PNIPAm/gelatin hydrogel can achieve 3D complex deformations, stealth deformation, erasable and reprogrammed surface patterning, and multistage encryption by simply modulating the location and shape of gelatin to achieve an anisotropic structure. The work provides a simple and versatile way to obtain an anisotropic hydrogel with a definite and predictable structure, which is demonstrated across a range of different monomers. It improves the responsive performance and broadens the hydrogel application to the non-aqueous environment. Additionally, this tropic movement of gelatin can be extended for the design of new types of anisotropic materials and thus endows the materials with diverse functionality.


Subject(s)
Gelatin , Hydrogels , Hydrogels/chemistry , Gelatin/chemistry , Acrylic Resins/chemistry , Temperature
11.
J Mater Chem B ; 11(3): 560-564, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36598010

ABSTRACT

The driving principle of a thermal-responsive hydrogel that loses water at high temperature and absorbs water at low temperature limits its application in an aqueous environment. Here, a gradient hydrogel actuator was developed by introducing sodium hyaluronate into poly(N-isopropylacrylamide) hydrogel by an asymmetric mold method. The hydrogel exhibited a fast response above the LCST in air and unusual self-recovery without the need for further temperature stimuli. The actuation behavior was related to conversion from free water to bound water and water retention within the gradient matrix. The self-recovery mechanism was explored. This work provides a new insight into designing bionic hydrogels applied in a non-aqueous environment.


Subject(s)
Acrylic Resins , Hydrogels , Temperature , Cold Temperature
12.
Mater Horiz ; 9(12): 2993-3001, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36222422

ABSTRACT

A new family of supramolecular materials is exploited from waste thermosets via a one-step retrosynthetic approach, which exhibits distinguished adhesion properties in dry/wet environments, good corrosion resistance and dynamic reversibility. This work opens up a wide design space for supramolecular materials with excellent performances and proposes a new strategy for efficient utilization of hybrid degraded products.


Subject(s)
Biochemical Phenomena , Plastics , Corrosion
13.
Chem Asian J ; 17(24): e202200902, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36278507

ABSTRACT

The growing scale of production of wind turbines represents a big challenge for chemical recycling of amine-cured epoxy resin (EP) to achieve high-efficiency degradation and high-value utilization of degradation products. Here, H2 O2 /phosphotungstic acid (HPW) catalytic oxidation system is demonstrated to completely degrade EP thermoset with the solid recovery rate of 96% at a reaction temperature of 80 °C for 4 h. Owing to protonation and bonding effect of HPW to the amine groups, the degradation products had a weight-average molecular weight of 4285 with narrow molecular weight distribution. They were used as dye adsorption blend films and supramolecular adhesives based on hydrogen bonding and coordination bonding respectively. The work demonstrates a feasible and promising method to recover the EP thermoset into high-performance materials.


Subject(s)
Amines , Epoxy Resins , Phosphotungstic Acid/chemistry , Epoxy Resins/chemistry , Catalysis
14.
Carbohydr Polym ; 289: 119473, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35483828

ABSTRACT

Introducing the gradient structure into ion-crosslinked polysaccharide (ICP) hydrogels is an effective strategy to expand their application scope in biomedicine and smart materials. However, fast gelation between polysaccharide and metal ion makes it difficult to construct/regulate gradient structure. Here, we developed a new method to address the issue by combining electrolysis with electrophoresis. Making use of the gradual generation of copper ions from the Cu anode and continuous migration to the cathode, a Cu2+-crosslinked sodium alginate (SA)-based hydrogel was obtained with both crosslinking density gradient and SA distribution gradient. The gradient structure can be conveniently adjusted to achieve excellent mechanical properties and delicate patterning. The electrolysis-electrophoresis method is successfully extended to versatile hydrogels by varying different metal electrodes (Fe or Zn electrodes), or different types of polysaccharides (chitosan or sodium carboxymethyl cellulose). This work opens a new insight for designing gradient ICP hydrogels and provides the potential for bionic applications.


Subject(s)
Alginates , Hydrogels , Alginates/chemistry , Electrolysis , Electrophoresis , Hydrogels/chemistry , Ions , Polysaccharides/chemistry
15.
Contrast Media Mol Imaging ; 2022: 9742461, 2022.
Article in English | MEDLINE | ID: mdl-35480082

ABSTRACT

Cystic echinococcosis (CE) is a severe and neglected zoonotic disease that poses health and socioeconomic hazards. So far, the prevention and treatment of CE are far from meeting people's ideal expectations. Therefore, to gain insight into the prevention and diagnosis of CE, we explored the changes in RNA molecules and the biological processes and pathways involved in these RNA molecules as E. granulosus infects the host. Interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17A, and tumor necrosis factor (TNF)-α levels in peripheral blood serum of E. granulosus infected and uninfected female BALB/c mice were measured using the cytometric bead array mouse Th1/Th2/Th17 cytokine kit. mRNA, microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) profiles of spleen CD4+ T cells from the two groups of mice were analyzed using high-throughput sequencing and bioinformatics. The levels of IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α were significantly higher in the serum of the CE mice than in control mice (P < 0.01). In total, 1,758 known mRNAs, 37 miRNAs, 175 lncRNAs, and 22 circRNAs were differentially expressed between infected and uninfected mice (|fold change| ≥ 0.585, P < 0.05). These differentially expressed molecules are involved in chromosome composition, DNA/RNA metabolism, and gene expression in cell composition, biological function, and cell function. Moreover, closely related to the JAK/STAT signaling pathways, mitogen-activated protein kinase signaling pathways, P53 signaling pathways, PI3K/AKT signaling pathways, cell cycle, and metabolic pathways. E. granulosus infection significantly increased the levels of IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α in mouse peripheral blood of mice and significantly changed expression levels of various coding and noncoding RNAs. Further study of these trends and pathways may help clarify the pathogenesis of CE and provide new insights into the prevention and treatment of this disease.


Subject(s)
Echinococcosis , Interleukin-10 , Animals , CD4-Positive T-Lymphocytes/metabolism , Female , Interleukin-10/metabolism , Interleukin-17 , Interleukin-2 , Interleukin-4 , Interleukin-6 , Mice , Phosphatidylinositol 3-Kinases , RNA, Messenger/genetics , RNA, Untranslated , Spleen , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/genetics
16.
ChemSusChem ; 15(3): e202101607, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-34747148

ABSTRACT

Plastic has now become a contradiction between civilization and pollution that human society has to resolve. The recycling of thermosetting plastics in waste plastics is a huge challenge since they are difficult to remold like thermoplastic plastics due to their high crosslinking density. Here, a new strategy was developed to achieve multicycling of anhydride-cured epoxy thermosets. The process consisted of mild and high-efficiency alcoholysis catalyzed by potassium phosphate/low-boiling alcohol system, and subsequent fast hydrolysis to obtain degradation products rich of carboxyl groups. The degradation products were reused as curing agent to prepare new anhydride-cured epoxy thermosets without sacrifice of high strength and stability. Moreover, the new epoxy thermosets could still be repeatedly recycled using the same protocol. The insolubility of potassium phosphate in ethanol at room temperature made the separation and reuse of the catalyst more convenient. The use of low-boiling alcohol not only allowed high-efficiency degradation but also enabled easy separation from the degradation products. The excellent degradation performance was attributed to the improved swelling of the thermoset and the increased solubility of potassium phosphate induced by small amounts of water in the alcohol. This research provides a recycling method that can reintegrate thermoset waste plastics into remodeling ones under the background of circular economy.


Subject(s)
Epoxy Resins , Recycling , Catalysis , Humans , Hydrolysis , Plastics
17.
Mater Horiz ; 8(1): 234-243, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-34821302

ABSTRACT

Novel applications of waste thermosetting resins are developed by facile mechanical crushing, and their excellent performances are demonstrated in oil-water separation, superhydrophobic coatings with diverse water adhesion, acid liquid/gas monitoring and information storage. This work provides new ideas for waste treatments and functional material design, as well as speeds up the transformation of waste resins from laboratory achievements to industrial applications. Moreover, it can also improve the utilization efficiency of non-renewable resources and meet the requirements of energy conservation and environmental protection.

18.
Macromol Rapid Commun ; 42(14): e2000749, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34128581

ABSTRACT

Building the differential growth through the thickness is a promising and challenging approach to design the morphing structures of hydrogel actuators. Besides retaining the size of the hydrogel actuators under environmental stimuli still remains a big challenge. Herein, a facile and universal approach is developed to address both issues by introducing PEG during the polymerization of N-isopropylacrylamide (NIPAm) via one step method using asymmetric mold. Both composition gradient and pore gradient are obtained in micro level along the thickness direction of the final hydrogel, while thin-thickness gradient in macro level. The thickness gradient and water retention can be controllably adjusted by changing PEG concentration. The introduction of PEG effectively improves both responsive and non-shrunken performance by the interaction with PNIPAm. The resultant anisotropic PNIPAm/PEG hydrogel respond quickly and reach maximum deformation (360°) within 10 s at low temperature (40 °C). The various 3D shape and biomimetic movement can be programmed by simply controlling the PEG concentration and mold shape. This strategy can provide new insights into the design intelligent soft materials with 3D morphing for bioinspired and biomedical applications.


Subject(s)
Biomimetics , Hydrogels , Anisotropy , Polymerization , Water
19.
Waste Manag ; 126: 89-96, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33744560

ABSTRACT

The styrene-maleic acid copolymer (SMC) was obtained by selective and complete cleavage of ester groups from waste thermosetting unsaturated polyester resins (WTUPR). The degradation was performed in glycol at 180 °C for 5 h with potassium carbonate as a catalyst and the resultant potassium salt of SMC (SMC-K) can be very easily separated by precipitation using ethanol with a yield of 63.8%. The SMC-K was integrated with polyvinyl alcohol to form amphiphilic aerogels via freeze-thaw and freeze-drying processes. The aerogel exhibits a low density of 0.024 g·mL-1 due to hierarchical pore structures with a size range from nanometer to micrometer scale. Besides, the good compressibility and resilience of the aerogel are demonstrated. The amphiphilic aerogel displayed high absorption of both water and oily liquids (over 30 g.g-1 and 20 g.g-1 for water and dichloromethane respectively), together with a good recycle adsorption efficiency (>90% after 10 cycles). This work provides a new strategy on upcycling of WTUPR.


Subject(s)
Oils , Recycling , Adsorption , Gels , Polyesters
20.
J Mater Chem B ; 8(13): 2702-2708, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32149318

ABSTRACT

Susceptibility of traditional hydrogels to water leads to the deterioration of their mechanical properties and dimensional instability. Inspired by bone tissues, here, we report a nonswellable gradient hydrogel with adjustable mechanical properties via a simple acid-heat treatment of polyamide-based hydrogels. Both the hydrophilicity/hydrophobicity and crosslinking degree of the gel can be simultaneously regulated by taking advantage of the conversion of amide groups to imide groups in the hydrogel. A gradient imide structure is formed with a dense layer near the surface of the gel. The resultant hydrogel has no size change both in water and 0.9 wt% NaCl solution while it shows high strength with a compressive stress of 70 MPa at 70% strain at a higher imidization degree. At a lower imidization degree, the gel has excellent fatigue resistance and resilience and can return to its original state after 5 cycles of 90% strain.


Subject(s)
Hydrogels/chemistry , Hydrogels/chemical synthesis , Particle Size , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...