Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Phys Med Biol ; 69(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38722545

ABSTRACT

Objective.In this work, we aim to propose an accurate and robust spectrum estimation method by synergistically combining x-ray imaging physics with a convolutional neural network (CNN).Approach.The approach relies on transmission measurements, and the estimated spectrum is formulated as a convolutional summation of a few model spectra generated using Monte Carlo simulation. The difference between the actual and estimated projections is utilized as the loss function to train the network. We contrasted this approach with the weighted sums of model spectra approach previously proposed. Comprehensive studies were performed to demonstrate the robustness and accuracy of the proposed approach in various scenarios.Main results.The results show the desirable accuracy of the CNN-based method for spectrum estimation. The ME and NRMSE were -0.021 keV and 3.04% for 80 kVp, and 0.006 keV and 4.44% for 100 kVp, superior to the previous approach. The robustness test and experimental study also demonstrated superior performances. The CNN-based approach yielded remarkably consistent results in phantoms with various material combinations, and the CNN-based approach was robust concerning spectrum generators and calibration phantoms.Significance. We proposed a method for estimating the real spectrum by integrating a deep learning model with real imaging physics. The results demonstrated that this method was accurate and robust in estimating the spectrum, and it is potentially helpful for broad x-ray imaging tasks.


Subject(s)
Monte Carlo Method , Neural Networks, Computer , Phantoms, Imaging , X-Rays , Image Processing, Computer-Assisted/methods
2.
Cancer Res ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536129

ABSTRACT

T cells recognize tumor antigens and initiate an anti-cancer immune response in the very early stages of tumor development, and the antigen specificity of T cells is determined by the T cell receptor (TCR). Therefore, monitoring changes in the TCR repertoire in peripheral blood may offer a strategy to detect various cancers at a relatively early stages. Here, we developed the deep learning framework iCanTCR to identify cancer patients based on the TCR repertoire. The iCanTCR framework uses TCRß sequences from an individual as an input and outputs the predicted cancer probability. The model was trained on over 2000 publicly available TCR repertoires from eleven types of cancer and healthy controls. Analysis of several additional publicly available datasets validated the ability of iCanTCR to distinguish cancer patients from non-cancer individuals and demonstrated the capability of iCanTCR for the accurate classification of multiple cancers. Importantly, iCanTCR precisely identified individuals with early-stage cancer with an area under the curve (AUC) of 86%. Altogether, this work provides a liquid biopsy approach to capture immune signals from peripheral blood for non-invasive cancer diagnosis.

3.
Elife ; 122024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236718

ABSTRACT

As the genome is organized into a three-dimensional structure in intracellular space, epigenomic information also has a complex spatial arrangement. However, most epigenetic studies describe locations of methylation marks, chromatin accessibility regions, and histone modifications in the horizontal dimension. Proper spatial epigenomic information has rarely been obtained. In this study, we designed spatial chromatin accessibility sequencing (SCA-seq) to resolve the genome conformation by capturing the epigenetic information in single-molecular resolution while simultaneously resolving the genome conformation. Using SCA-seq, we are able to examine the spatial interaction of chromatin accessibility (e.g. enhancer-promoter contacts), CpG island methylation, and spatial insulating functions of the CCCTC-binding factor. We demonstrate that SCA-seq paves the way to explore the mechanism of epigenetic interactions and extends our knowledge in 3D packaging of DNA in the nucleus.


Subject(s)
Chromatin , Epigenomics , Chromatin/genetics , Chromosomes , DNA , Regulatory Sequences, Nucleic Acid , DNA Methylation
4.
Med Phys ; 51(1): 394-406, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37475544

ABSTRACT

BACKGROUND: Due to inconsistent positioning, tumor shrinking, and weight loss during fractionated treatment, the initial plan was no longer appropriate after a few fractional treatments, and the patient will require adaptive helical tomotherapy (HT) to overcome the issue. Patients are scanned with megavoltage computed tomography (MVCT) before each fractional treatment, which is utilized for patient setup and provides information for dose reconstruction. However, the low contrast and high noise of MVCT make it challenging to delineate treatment targets and organs at risk (OAR). PURPOSE: This study developed a deep-learning-based approach to generate high-quality synthetic kilovoltage computed tomography (skVCT) from MVCT and meet clinical dose requirements. METHODS: Data from 41 head and neck cancer patients were collected; 25 (2995 slices) were used for training, and 16 (1898 slices) for testing. A cycle generative adversarial network (cycleGAN) based on attention gate and residual blocks was used to generate MVCT-based skVCT. For the 16 patients, kVCT-based plans were transferred to skVCT images and electron density profile-corrected MVCT images to recalculate the dose. The quantitative indices and clinically relevant dosimetric metrics, including the mean absolute error (MAE), structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), gamma passing rates, and dose-volume-histogram (DVH) parameters (Dmax , Dmean , Dmin ), were used to assess the skVCT images. RESULTS: The MAE, PSNR, and SSIM of MVCT were 109.6 ± 12.3 HU, 27.5 ± 1.1 dB, and 91.9% ± 1.7%, respectively, while those of skVCT were 60.6 ± 9.0 HU, 34.0 ± 1.9 dB, and 96.5% ± 1.1%. The image quality and contrast were enhanced, and the noise was reduced. The gamma passing rates improved from 98.31% ± 1.11% to 99.71% ± 0.20% (2 mm/2%) and 99.77% ± 0.18% to 99.98% ± 0.02% (3 mm/3%). No significant differences (p > 0.05) were observed in DVH parameters between kVCT and skVCT. CONCLUSION: With training on a small data set (2995 slices), the model successfully generated skVCT with improved image quality, and the dose calculation accuracy was similar to that of MVCT. MVCT-based skVCT can increase treatment accuracy and offer the possibility of implementing adaptive radiotherapy.


Subject(s)
Head and Neck Neoplasms , Radiotherapy, Conformal , Humans , Radiotherapy, Conformal/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Cone-Beam Computed Tomography , Image Processing, Computer-Assisted
5.
Crit Rev Oncol Hematol ; 192: 104192, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898477

ABSTRACT

Cancer progression is a dynamic process of continuous evolution, in which genetic diversity and heterogeneity are generated by clonal and subclonal amplification based on random mutations. Traditional cancer treatment strategies have a great challenge, which often leads to treatment failure due to drug resistance. Integrating evolutionary dynamics into treatment regimens may be an effective way to overcome the problem of drug resistance. In particular, a potential treatment is adaptive therapy, which strategy advocates containment strategies that adjust the treatment cycles according to tumor evolution to control the growth of treatment-resistant cells. In this review, we first summarize the shortcomings of traditional tumor treatment methods in evolution and then introduce the theoretical basis and research status of adaptive therapy. By analyzing the limitations of adaptive therapy and exploring possible solutions, we can broaden people's understanding of adaptive therapy and provide new insights and strategies for tumor treatment.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Humans , Drug Resistance, Neoplasm/genetics , Neoplasms/therapy , Neoplasms/drug therapy , Treatment Failure
6.
J Transl Int Med ; 11(3): 226-233, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662890

ABSTRACT

Chronic stress refers to continuous emotional changes and psychological pressure that individuals experience when they are unable to adjust and stabilize the internal environment over an extended period. It can increase the pressure on endocrine mediators and cytokines in the circulation, as well as tissues throughout the hypothalamic-pituitary-adrenaline (HPA) axis and sympathetic nervous system (SNS); thus, evolving the internal environment of the tumor. This review assesses several key issues, involving psychosocial factors, and integrates clinical, cellular, and molecular studies-as well as the latest research progress-to provide a mechanistic understanding regarding breast oncopsychology. We propose that chronic stress contributes to large individual diferences in the prognosis of breast cancer survivors because they change the basic physiological processes of the endocrine and immune systems, which in turn regulate tumor growth. The study of psychological and physiological reactions of breast cancer patients suggests a new idea for psychological intervention and clinical treatment for breast cancer patients.

7.
Phys Med Biol ; 68(15)2023 07 21.
Article in English | MEDLINE | ID: mdl-37406635

ABSTRACT

Objective. Proton source model commissioning (PSMC) is critical for ensuring accurate dose calculation in pencil beam scanning (PBS) proton therapy using Monte Carlo (MC) simulations. PSMC aims to match the calculated dose to the delivered dose. However, commissioning the 'nominal energy' and 'energy spread' parameters in PSMC can be challenging, as these parameters cannot be directly obtained from solving equations. To efficiently and accurately commission the nominal energy and energy spread in a proton source model, we developed a convolution neural network (CNN) named 'PSMC-Net.'Methods. The PSMC-Net was trained separately for 33 energies (E, 70-225 MeV with a step of 5 MeV plus 226.09 MeV). For eachE, a dataset was generated consisting of 150 source model parameters (15 nominal energies ∈ [E,E+ 1.5 MeV], ten spreads ∈ [0, 1]) and the corresponding 150 MC integrated depth doses (IDDs). Of these 150 data pairs, 130 were used for training the network, 10 for validation, and 10 for testing.Results. The source model, built by 33 measured IDDs and 33 PSMC-Nets (cost 0.01 s), was used to compute the MC IDDs. The gamma passing rate (GPRs, 1 mm/1%) between MC and measured IDDs was 99.91 ± 0.12%. However, when no commissioning was made, the corresponding GPR was reduced to 54.11 ± 22.36%, highlighting the tremendous significance of our CNN commissioning method. Furthermore, the MC doses of a spread-out Bragg peak and 20 patient PBS plans were also calculated, and average 3D GPRs (2 mm/2% with a 10% threshold) were 99.89% and 99.96 ± 0.06%, respectively.Significance. We proposed a nova commissioning method of the proton source model using CNNs, which made the PSMC process easy, efficient, and accurate.


Subject(s)
Proton Therapy , Humans , Proton Therapy/methods , Protons , Radiotherapy Dosage , Phantoms, Imaging , Neural Networks, Computer , Radiotherapy Planning, Computer-Assisted , Monte Carlo Method
8.
J Hematol Oncol ; 16(1): 63, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328852

ABSTRACT

BACKGROUND: Early detection is critical for improving the survival of breast cancer (BC) patients. Exhaled breath testing as a non-invasive technique might help to improve BC detection. However, the breath test accuracy for BC diagnosis is unclear. METHODS: This multi-center cohort study consecutively recruited 5047 women from four areas of China who underwent BC screening. Breath samples were collected through standardized breath collection procedures. Volatile organic compound (VOC) markers were identified from a high-throughput breathomics analysis by the high-pressure photon ionization-time-of-flight mass spectrometry (HPPI-TOFMS). Diagnostic models were constructed using the random forest algorithm in the discovery cohort and tested in three external validation cohorts. RESULTS: A total of 465 (9.21%) participants were identified with BC. Ten optimal VOC markers were identified to distinguish the breath samples of BC patients from those of non-cancer women. A diagnostic model (BreathBC) consisting of 10 optimal VOC markers showed an area under the curve (AUC) of 0.87 in external validation cohorts. BreathBC-Plus, which combined 10 VOC markers with risk factors, achieved better performance (AUC = 0.94 in the external validation cohorts), superior to that of mammography and ultrasound. Overall, the BreathBC-Plus detection rates were 96.97% for ductal carcinoma in situ, 85.06%, 90.00%, 88.24%, and 100% for stages I, II, III, and IV BC, respectively, with a specificity of 87.70% in the external validation cohorts. CONCLUSIONS: This is the largest study on breath tests to date. Considering the easy-to-perform procedure and high accuracy, these findings exemplify the potential applicability of breath tests in BC screening.


Subject(s)
Breast Neoplasms , Volatile Organic Compounds , Humans , Female , Breast Neoplasms/diagnosis , Volatile Organic Compounds/analysis , Cohort Studies , Early Detection of Cancer/methods , Breath Tests/methods , Biopsy
9.
J Breast Cancer ; 26(2): 136-151, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37051647

ABSTRACT

PURPOSE: We aimed to identify effectiveness-associated indicators and evaluate the optimal tumor reduction rate (TRR) after two cycles of neoadjuvant chemotherapy (NAC) in patients with invasive breast cancer. METHODS: This retrospective case-control study included patients who underwent at least four cycles of NAC at the Department of Breast Surgery between February 2013 and February 2020. A regression nomogram model for predicting pathological responses was constructed based on potential indicators. RESULTS: A total of 784 patients were included, of whom 170 (21.68%) reported pathological complete response (pCR) after NAC and 614 (78.32%) had residual invasive tumors. The clinical T stage, clinical N stage, molecular subtype, and TRR were identified as independent predictors of pCR. Patients with a TRR > 35% were more likely to achieve pCR (odds ratio, 5.396; 95% confidence interval [CI], 3.299-8.825). The receiver operating characteristic (ROC) curve was plotted using the probability value, and the area under the ROC curve was 0.892 (95% CI, 0.863-0.922). CONCLUSION: TRR > 35% is predictive of pCR after two cycles of NAC, and an early evaluation model using a nomogram based on five indicators, age, clinical T stage, clinical N stage, molecular subtype, and TRR, is applicable in patients with invasive breast cancer.

10.
iScience ; 26(4): 106330, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36950120

ABSTRACT

Neoadjuvant therapy (NAT) is currently recommended to patients with human epidermal growth factor receptor 2-positive breast cancer (HER2+ BC) that typically exhibit a poor prognosis. The tumor immune microenvironment profoundly affects the efficacy of NAT. However, the correlation between tumor-infiltrating lymphocytes or their specific subpopulations and the response to NAT in HER2+ BC remains largely unknown. In our study, the immune infiltration status of 295 patients was classified as "immune-rich" or "immune-poor" phenotypes. The "immune-rich" phenotype was significantly positively related to pathological complete response (pCR). Ten genes were correlated with both pCR and the immune phenotype based on the results of spline and logistic regression. We constructed a generalized non-linear model combining linear and non-linear gene effects and successfully validated its predictive power using an internal and external validation set (AUC = 0.819, 0.797; respectively) and a clinical set (accuracy = 0.75).

11.
Cancer Biol Med ; 20(3)2023 03 24.
Article in English | MEDLINE | ID: mdl-36971132

ABSTRACT

OBJECTIVE: Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth receptor 2-positive and triple-negative breast cancer. The role of peripheral immune components in predicting therapeutic responses has received limited attention. Herein we determined the relationship between dynamic changes in peripheral immune indices and therapeutic responses during NAT administration. METHODS: Peripheral immune index data were collected from 134 patients before and after NAT. Logistic regression and machine learning algorithms were applied to the feature selection and model construction processes, respectively. RESULTS: Peripheral immune status with a greater number of CD3+ T cells before and after NAT, and a greater number of CD8+ T cells, fewer CD4+ T cells, and fewer NK cells after NAT was significantly related to a pathological complete response (P < 0.05). The post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT (HR = 0.13, P = 0.008). Based on the results of logistic regression, 14 reliable features (P < 0.05) were selected to construct the machine learning model. The random forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches (AUC = 0.733). CONCLUSIONS: Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed. A random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy.


Subject(s)
Neoadjuvant Therapy , Triple Negative Breast Neoplasms , Humans , Neoadjuvant Therapy/methods , CD8-Positive T-Lymphocytes , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Machine Learning , Killer Cells, Natural
13.
Cell Death Dis ; 14(2): 76, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36725842

ABSTRACT

Although programmed death-ligand 1 (PD-L1) inhibitors have achieved some therapeutic success in breast cancer, their efficacy is limited by low therapeutic response rates, which is closely related to the immune escape of breast cancer cells. Tissue differentiation inducing non-protein coding RNA (TINCR), a long non-coding RNA, as an oncogenic gene associated with the progression of various malignant tumors, including breast cancer; however, the role of TINCR in tumor immunity, especially in breast cancer, remains unclear. We confirmed that TINCR upregulated PD-L1 expression in vivo and in vitro, and promoted the progression of breast cancer. Next, we revealed that TINCR knockdown can significantly improve the therapeutic effect of PD-L1 inhibitors in breast cancer in vivo. Mechanistically, TINCR recruits DNMT1 to promote the methylation of miR-199a-5p loci and inhibit its transcription. Furthermore, in the cytoplasm, TINCR potentially acts as a molecular sponge of miR-199a-5p and upregulates the stability of USP20 mRNA through a competing endogenous RNA (ceRNA) regulatory mechanism, thus promoting PD-L1 expression by decreasing its ubiquitination level. IFN-γ stimulation activates STAT1 by phosphorylation, which migrates into the nucleus to promote TINCR transcription. This is the first study to describe the regulatory role of TINCR in breast cancer tumor immunity, broadening the current paradigm of the functional diversity of TINCR in tumor biology. In addition, our study provides new research directions and potential therapeutic targets for PD-L1 inhibitors in breast cancer.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Female , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Immune Checkpoint Inhibitors , Immunotherapy , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Ubiquitin Thiolesterase/metabolism
14.
Technol Cancer Res Treat ; 22: 15330338221148317, 2023.
Article in English | MEDLINE | ID: mdl-36638542

ABSTRACT

Purpose: To investigate and compare 2 cone-beam computed tomography (CBCT) correction methods for CBCT-based dose calculation. Materials and Methods: Routine CBCT image sets of 12 head and neck cancer patients who received volumetric modulated arc therapy (VMAT) treatment were retrospectively analyzed. The CBCT images obtained using an on-board imager (OBI) at the first treatment fraction were firstly deformable registered and padded with the kVCT images to provide enough anatomical information about the tissues for dose calculation. Then, 2 CBCT correction methods were developed and applied to correct CBCT Hounsfield unit (HU) values. One method (HD method) is based on protocol-specific CBCT HU to physical density (HD) curve, and the other method (HM method) is based on histogram matching (HM) of HU value. The corrected CBCT images (CBCTHD and CBCTHM for HD and HM methods) were imported into the original planning system for dose calculation based on the HD curve of kVCT (the planning CT). The dose computation result was analyzed and discussed to compare these 2 CBCT-correction methods. Results: Dosimetric parameters, such as the Dmean, Dmax and D5% of the target volume in CBCT plan doses, were higher than those in the kVCT plan doses; however, the deviations were less than 2%. The D2%, in parallel organs such as the parotid glands, the deviations from the CBCTHM plan dose were less than those of the CBCTHD plan dose. The differences were statistically significant (P < .05). Meanwhile, the V30 value based on the HM method was better than that based on the HD method in the oral cavity region (P = .016). In addition, we also compared the γ passing rates of kVCT plan doses with the 2 CBCT plan doses, and negligible differences were found. Conclusion: The HM method was more suitable for head and neck cancer patients than the HD one. Furthermore, with the CBCTHM-based method, the dose calculation result better matches the kVCT-based dose calculation.


Subject(s)
Head and Neck Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods
15.
Z Med Phys ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36631314

ABSTRACT

PURPOSE: During the radiation treatment planning process, one of the time-consuming procedures is the final high-resolution dose calculation, which obstacles the wide application of the emerging online adaptive radiotherapy techniques (OLART). There is an urgent desire for highly accurate and efficient dose calculation methods. This study aims to develop a dose super resolution-based deep learning model for fast and accurate dose prediction in clinical practice. METHOD: A Multi-stage Dose Super-Resolution Network (MDSR Net) architecture with sparse masks module and multi-stage progressive dose distribution restoration method were developed to predict high-resolution dose distribution using low-resolution data. A total of 340 VMAT plans from different disease sites were used, among which 240 randomly selected nasopharyngeal, lung, and cervix cases were used for model training, and the remaining 60 cases from the same sites for model benchmark testing, and additional 40 cases from the unseen site (breast and rectum) was used for model generalizability evaluation. The clinical calculated dose with a grid size of 2 mm was used as baseline dose distribution. The input included the dose distribution with 4 mm grid size and CT images. The model performance was compared with HD U-Net and cubic interpolation methods using Dose-volume histograms (DVH) metrics and global gamma analysis with 1%/1 mm and 10% low dose threshold. The correlation between the prediction error and the dose, dose gradient, and CT values was also evaluated. RESULTS: The prediction errors of MDSR were 0.06-0.84% of Dmean indices, and the gamma passing rate was 83.1-91.0% on the benchmark testing dataset, and 0.02-1.03% and 71.3-90.3% for the generalization dataset respectively. The model performance was significantly higher than the HD U-Net and interpolation methods (p < 0.05). The mean errors of the MDSR model decreased (monotonously by 0.03-0.004%) with dose and increased (by 0.01-0.73%) with the dose gradient. There was no correlation between prediction errors and the CT values. CONCLUSION: The proposed MDSR model achieved good agreement with the baseline high-resolution dose distribution, with small prediction errors for DVH indices and high gamma passing rate for both seen and unseen sites, indicating a robust and generalizable dose prediction model. The model can provide fast and accurate high-resolution dose distribution for clinical dose calculation, particularly for the routine practice of OLART.

16.
Mol Cancer ; 21(1): 176, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071523

ABSTRACT

Immunotherapy, especially immune checkpoint inhibitors (ICIs), has revolutionized the treatment of many types of cancer, particularly advanced-stage cancers. Nevertheless, although a subset of patients experiences dramatic and long-term disease regression in response to ICIs, most patients do not benefit from these treatments. Some may even experience cancer progression. Immune escape by tumor cells may be a key reason for this low response rate. N6-methyladenosine (m6A) is the most common type of RNA methylation and has been recognized as a critical regulator of tumors and the immune system. Therefore, m6A modification and related regulators are promising targets for improving the efficacy of tumor immunotherapy. However, the association between m6A modification and tumor immune escape (TIE) has not been comprehensively summarized. Therefore, this review summarizes the existing knowledge regarding m6A modifications involved in TIE and their potential mechanisms of action. Moreover, we provide an overview of currently available agents targeting m6A regulators that have been tested for their elevated effects on TIE. This review establishes the association between m6A modifications and TIE and provides new insights and strategies for maximizing the efficacy of immunotherapy by specifically targeting m6A modifications involved in TIE.


Subject(s)
Neoplasms , Tumor Escape , Adenosine/analogs & derivatives , Humans , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , RNA , Tumor Escape/genetics
17.
Front Oncol ; 12: 924298, 2022.
Article in English | MEDLINE | ID: mdl-36172144

ABSTRACT

Background: T1-2 breast cancer patients with only one sentinel lymph node (SLN) metastasis have an extremely low non-SLN (NSLN) metastatic rate and are favorable for axillary lymph node dissection (ALND) exemption. This study aimed to construct a nomogram-based preoperative prediction model of NSLN metastasis for such patients, thereby assisting in preoperatively selecting proper surgical procedures. Methods: A total of 729 T1-2 breast cancer patients with only one SLN metastasis undergoing sentinel lymph node biopsy and ALND were retrospectively selected from Harbin Medical University Cancer Hospital between January 2013 and December 2020, followed by random assignment into training (n=467) and validation cohorts (n=262). A nomogram-based prediction model for NSLN metastasis risk was constructed by incorporating the independent predictors of NSLN metastasis identified from multivariate logistic regression analysis in the training cohort. The performance of the nomogram was evaluated by the calibration curve and the receiver operating characteristic (ROC) curve. Finally, decision curve analysis (DCA) was used to determine the clinical utility of the nomogram. Results: Overall, 160 (21.9%) patients had NSLN metastases. Multivariate analysis in the training cohort revealed that the number of negative SLNs (OR: 0.98), location of primary tumor (OR: 2.34), tumor size (OR: 3.15), and lymph-vascular invasion (OR: 1.61) were independent predictors of NSLN metastasis. The incorporation of four independent predictors into a nomogram-based preoperative estimation of NSLN metastasis demonstrated a satisfactory discriminative capacity, with a C-index and area under the ROC curve of 0.740 and 0.689 in the training and validation cohorts, respectively. The calibration curve showed good agreement between actual and predicted NSLN metastasis risks. Finally, DCA revealed the clinical utility of the nomogram. Conclusion: The nomogram showed a satisfactory discriminative capacity of NSLN metastasis risk in T1-2 breast cancer patients with only one SLN metastasis, and it could be used to preoperatively estimate NSLN metastasis risk, thereby facilitating in precise clinical decision-making on the selective exemption of ALND in such patients.

18.
Front Surg ; 9: 890554, 2022.
Article in English | MEDLINE | ID: mdl-35836596

ABSTRACT

Background and Objective: Sentinel lymph node biopsy (SLNB) is used to assess the status of axillary lymph node (ALN), but it causes many adverse reactions. Considering the low rate of sentinel lymph node (SLN) metastasis in T1 breast cancer, this study aims to identify the characteristics of T1 breast cancer without SLN metastasis and to select T1 breast cancer patients who avoid SLNB through constructing a nomogram. Methods: A total of 1,619 T1 breast cancer patients with SLNB in our hospital were enrolled in this study. Through univariate and multivariate logistic regression analysis, we analyzed the tumor anatomical and clinicopathological factors and constructed the Heilongjiang Medical University (HMU) nomogram. We selected the patients exempt from SLNB by using the nomogram. Results: In the training cohort of 1,000 cases, the SLN metastasis rate was 23.8%. Tumor volume, swollen axillary lymph nodes, pathological types, and molecular subtypes were found to be independent predictors for SLN metastasis in multivariate regression analysis. Distance from nipple or surface and position of tumor have no effect on SLN metastasis. A regression model based on the results of the multivariate analysis was developed to predict the risk of SLN metastasis, indicating an AUC of 0.798. It showed excellent diagnostic performance (AUC = 0.773) in the validation cohort. Conclusion: The HMU nomogram for predicting SLN metastasis incorporates four variables, including tumor volume, swollen axillary lymph nodes, pathological types, and molecular subtypes. The SLN metastasis rates of intraductal carcinoma and HER2 enriched are 2.05% and 6.67%. These patients could be included in trials investigating the SLNB exemption.

19.
J Immunol Res ; 2022: 3143511, 2022.
Article in English | MEDLINE | ID: mdl-35578667

ABSTRACT

Breast cancer (BRCA) is one of the leading causes of death among women worldwide, and drug resistance often leads to a poor prognosis. Necroptosis is a type of programmed cell death (PCD) and exhibits regulatory effects on tumor progression, but few studies have focused on the relationships between necroptosis-associated lncRNAs and BRCA. In this study, we established a signature basis of 7 necroptosis-related lncRNAs associated with prognosis and divided BRCA patients into high- and low-risk groups. Kaplan-Meier curves all showed an adverse prognosis for patients in the high-risk group. Cox assays confirmed that risk score was an independent prognostic factor for BRCA patients. The receiver operating characteristic (ROC) curve proved the predictive accuracy of the signature and the area under the curve (AUC) values of the risk score reached 0.722. The nomogram relatively accurately predicted the prognosis of the patients. GSEA analysis suggested that the related signaling pathways and biological processes enriched in the high- and low-risk groups may influence the tumor microenvironment (TME) of BRCA. ssGSEA showed the difference in immune cell infiltration, immune pathway activation, and immune checkpoint expression between the two risk groups, with the low-risk group more suitable for immunotherapy. According to the significant difference in IC50 between risk groups, patients can be guided for an individualized treatment plan. Overall, the authors established a prognostic signature consisting of 7 necroptosis-associated lncRNAs that can independently predict the clinical outcome of BRCA patients. The difference in the tumor immune microenvironment between the low- and high-risk populations may be the reason for the resistance to immunotherapy in some patients.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Necroptosis/genetics , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Microenvironment/genetics
20.
Front Oncol ; 12: 833816, 2022.
Article in English | MEDLINE | ID: mdl-35433460

ABSTRACT

Purpose: The purpose of this study was to evaluate and explore the difference between an atlas-based and deep learning (DL)-based auto-segmentation scheme for organs at risk (OARs) of nasopharyngeal carcinoma cases to provide valuable help for clinical practice. Methods: 120 nasopharyngeal carcinoma cases were established in the MIM Maestro (atlas) database and trained by a DL-based model (AccuContour®), and another 20 nasopharyngeal carcinoma cases were randomly selected outside the atlas database. The experienced physicians contoured 14 OARs from 20 patients based on the published consensus guidelines, and these were defined as the reference volumes (Vref). Meanwhile, these OARs were auto-contoured using an atlas-based model, a pre-built DL-based model, and an on-site trained DL-based model. These volumes were named Vatlas, VDL-pre-built, and VDL-trained, respectively. The similarities between Vatlas, VDL-pre-built, VDL-trained, and Vref were assessed using the Dice similarity coefficient (DSC), Jaccard coefficient (JAC), maximum Hausdorff distance (HDmax), and deviation of centroid (DC) methods. A one-way ANOVA test was carried out to show the differences (between each two of them). Results: The results of the three methods were almost similar for the brainstem and eyes. For inner ears and temporomandibular joints, the results of the pre-built DL-based model are the worst, as well as the results of atlas-based auto-segmentation for the lens. For the segmentation of optic nerves, the trained DL-based model shows the best performance (p < 0.05). For the contouring of the oral cavity, the DSC value of VDL-pre-built is the smallest, and VDL-trained is the most significant (p < 0.05). For the parotid glands, the DSC of Vatlas is the minimum (about 0.80 or so), and VDL-pre-built and VDL-trained are slightly larger (about 0.82 or so). In addition to the oral cavity, parotid glands, and the brainstem, the maximum Hausdorff distances of the other organs are below 0.5 cm using the trained DL-based segmentation model. The trained DL-based segmentation method behaves well in the contouring of all the organs that the maximum average deviation of the centroid is no more than 0.3 cm. Conclusion: The trained DL-based segmentation performs significantly better than atlas-based segmentation for nasopharyngeal carcinoma, especially for the OARs with small volumes. Although some delineation results still need further modification, auto-segmentation methods improve the work efficiency and provide a level of help for clinical work.

SELECTION OF CITATIONS
SEARCH DETAIL
...