Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(13): e2309159, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38148314

ABSTRACT

Extremely/super low frequency (ELF/SLF) electromagnetic wave can effectively propagate in the harsh cross-medium environment where a high-frequency electromagnetic wave cannot pass due to the fast decay. For efficiently transmitting a strong ELF/SLF radiation signal, the traditional electromagnetic antenna requires a super-large loop (>10 km). To address this issue, in this work, a piezoelectric ceramic/ferromagnetic heterogeneous structured, cantilever beam-type electric-mechano-magnetic coupled resonator at only centimeter scale for ELF/SLF cross-medium magnetic communication is reported. Through designing hard-soft hybrid step-stiffness elastic beam, the resonator exhibits a much higher quality factor Q (≈240) for ELF/SLF magnetic field transmitting, which is one to five orders of magnitude higher than those of previously reported mechanical antennas and loop coil antennas. Moreover, the resonator exhibits a 5000 times higher magnetic field emitting efficiency compared to a conventional loop coil antenna in ELF/SLF band. It also demonstrates a 200% increase in magnetic field emitting capacity compared to existing piezoelectric-driven antennas. In addition, an ASK+PSK modulation method is proposed for suppressing relaxation time of the resonator, and a reduction in the relaxation time by 80% is observed. Furthermore, an air-seawater cross-medium magnetic field communication is successful demonstrated, indicating its potential as portable, high-efficient antenna for underwater and underground communications.

2.
Phys Rev Lett ; 131(5): 053802, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37595208

ABSTRACT

Inspired from electronic systems, topological photonics aims to engineer new optical devices with robust properties. In many cases, the ideas from topological phases protected by internal symmetries in fermionic systems are extended to those protected by crystalline symmetries. One such popular photonic crystal model was proposed by Wu and Hu in 2015 for realizing a bosonic Z_{2} topological crystalline insulator with robust topological edge states, which led to intense theoretical and experimental studies. However, a rigorous relationship between the bulk topology and edge properties for this model, which is central to evaluating its advantage over traditional photonic designs, has never been established. In this Letter, we revisit the expanded and shrunken honeycomb lattice structures proposed by Wu and Hu and show that they are topologically trivial in the sense that symmetric, localized Wannier functions can be constructed. We show that the Z and Z_{2} type classifications of the Wu-Hu model are equivalent to the C_{2}T protected Euler class and the second Stiefel-Whitney class, respectively, with the latter characterizing the full valence bands of the Wu-Hu model, indicating only a higher order topological insulator. Additionally, we show that the Wu-Hu interface states can be gapped by a uniform topology preserving C_{6} and T symmetric perturbation, which demonstrates the trivial nature of the interface. Our result reveals that topology is not a necessary condition for the reported helical edge states in many photonics systems and opens new possibilities for interface engineering that may not be constrained by topological considerations.

3.
Sci Total Environ ; 783: 147037, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34088161

ABSTRACT

This study aimed to investigate the mechanism of lead (Pb) immobilization by hydroxyapatite (HAP) in a soil-rice system, a pot experiment was conducted using Pb-contaminated soil amended with various rates of HAP and planted with rice (Oryza sativa L.). The Pb species in the soil and rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES). Application of HAP increased soil pH and induced the dissolution of phosphate, subsequently promoting the formation of chloropyromorphite, an insoluble Pb species, in the soil. Therefore, the acid soluble and DTPA-extractable Pb concentrations decreased significantly with increasing levels of applied HAP. HAP reduced the retention of Pb in the iron plaque on the root surface at maturity, thereby alleviating Pb uptake by rice roots. The amount of phosphate in roots were increased with increasing rate of application of HAP, but was negatively correlated with Pb in rice stems and leaves. Application of 32 g kg-1 of HAP triggered the precipitation of Pb5PO4Cl in roots, limiting Pb translocation from roots to shoots. In addition, HAP may induce the redistribution of Pb in rice nodes, lowering the transfer factor of Pb from the stem (or leaf) to rice grains. When the rate of application of HAP exceeds 4 g kg-1, the Pb concentration in brown rice could be reduced to less than the Chinese National Standard of 0.2 mg kg-1 (GB2762-2017).

4.
Int J Genomics ; 2018: 5702061, 2018.
Article in English | MEDLINE | ID: mdl-29850474

ABSTRACT

The forkhead box (Fox) gene family, one of the most important families of transcription factors, participates in various biological processes. However, Fox genes in Hymenoptera are still poorly known. In this study, 14 Fox genes were identified in the genome of Apis cerana. In addition, 16 (Apis mellifera), 13 (Apis dorsata), 16 (Apis florea), 17 (Bombus terrestris), 16 (Bombus impatiens), and 18 (Megachile rotundata) Fox genes were identified in their genomes, respectively. Phylogenetic analyses suggest that FoxA is absent in the genome of A. dorsata genome. Similarly, FoxG is missing in the genomes A. cerana and A. dorsata. Temporal expression profiles obtained by quantitative real-time PCR revealed that Fox genes have distinct expression patterns in A. cerana, especially for three genes ACSNU03719T0 (AcFoxN4), ACSNU05765T0 (AcFoxB), and ACSNU07465T0 (AcFoxL2), which displayed high expression at the egg stage. Tissue expression patterns showed that FoxJ1 is significantly higher in the antennae of A. cerana and A. mellifera compared to other tissues. These results may facilitate a better understanding of the potential physiological functions of the Fox gene family in A. cerana and provide valuable information for a comprehensive functional analysis of the Fox gene family in Hymenopterans.

5.
Mol Genet Genomics ; 293(1): 237-248, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29043489

ABSTRACT

Honey bee is a social insect. Its colony is mainly coordinated by the chemical signals such as pheromones produced by queen or brood. Correspondingly, the worker bee developed numerous complicated olfactory sensilla in antennae for detection of these colony chemical signals and nectar/pollen signals in foraging. With the normal development of new emerged workers, young adults (nurse bee) worked in colony at the first 2-3 weeks and then followed by the foraging activity outside of the hive, which give rise to great change of the surrounding chemical signals. However, the olfactory adaption mechanism of worker bee in these processes of behavioral development is still unclear. In this study, we conducted a comprehensive and quantitative analysis of gene expression in Apis mellifera antenna of newly emerged workers, nurses and foragers using transcriptome analysis. Meanwhile, we constructed experimental colonies to collect age-matched samples, which were used to determine whether task is the principal determinant of differential expression. RNA sequencing and quantitative real-time polymerase chain reaction revealed that 6 and 14 genes were closely associated with nurse and forager behaviors, respectively. Furthermore, a broad dynamic range of chemosensory gene families and candidate odorant degrading enzymes were analyzed at different behavior statuses. We firstly reported genes associated with nursing/foraging behavior from antennae and the variations of expression of genes belonging to various olfactory gene families at different development stages. These results not only could contribute to elucidating the relationship between olfactory and behavior-related changes, but also provide a new perspective into the molecular mechanism underlying honey bee division of labor.


Subject(s)
Bees/genetics , Insect Proteins/genetics , Pheromones/genetics , Transcriptome/genetics , Animals , Arthropod Antennae/physiology , Bees/physiology , Behavior, Animal , Female , Gene Expression Profiling/methods , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...