Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 85: 103624, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33617954

ABSTRACT

Cardiotoxicity is one of the primary limitations in the clinical use of the anticancer drug doxorubicin (DOX). However, the role of microRNAs (miRNAs) in DOX-induced cardiomyocyte death has not yet been covered. To investigate this, we observed a significant increase in miR-98 expression in neonatal rat ventricular myocytes after DOX treatment, and MTT, LIVE/Dead and Viability/Cytotoxicity staining showed that miR-98 mimic inhibited DOX-induced cell death. This was also confirmed by Flow cytometry and Annexin V-FITC/PI staining. Interestingly, the protein expression of caspase-8 was upregulated by miR-98 mimics during this process, whereas Fas and RIP3 were downregulated. In addition, the effect of miR-98 against the expression of Fas and RIP3 were restored by the specific caspase-8 inhibitor Z-IETD-FMK. Thus, we demonstrate that miR-98 protects cardiomyocytes from DOX-induced injury by regulating the caspase-8-dependent Fas/RIP3 pathway. Our findings enhance understanding of the therapeutic role of miRNAs in the treatment of DOX-induced cardiotoxicity.


Subject(s)
Antibiotics, Antineoplastic , Cardiotoxicity/genetics , Caspase 8/metabolism , Doxorubicin , MicroRNAs , Myocytes, Cardiac/metabolism , Animals , Cardiotoxicity/metabolism , Cell Survival , Cells, Cultured , Membrane Potential, Mitochondrial , Myocytes, Cardiac/physiology , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , fas Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL