Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Biomacromolecules ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728153

ABSTRACT

This study utilizes mechanochemistry to prepare retinol acetate (RA) solid dispersion (RA-sodium starch octenyl succinate (SSOS)), resulting in improved solubility, stability, and bioavailability compared with raw RA and commercial RA microcapsules. RA, poloxamer 188, SSOS, and milling beads (8 mm) were mixed in a ratio of 2:1:8:220 (w/w) and ball-milled at 100 rpm for 3 h. RA-SSOS exhibited a solubility of 1020.35 µL/mL and a 98.09% retention rate after aging at 30 °C. Rats fed with RA-SSOS showed an ∼30% increase in organ RA content. Characterization analysis attributed the solubility and stabilization of RA-SSOS to hydrogen bonding between RA and SSOS, along with an amorphous state. RA-SSOS offers significant advantages for the pharmaceutical and food industries, leveraging mechanochemistry to enhance solid dispersions for hydrophobic compounds and optimize drug delivery.

2.
mBio ; : e0103924, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757952

ABSTRACT

Bacteria sense changes in their environment and transduce signals to adjust their cellular functions accordingly. For this purpose, bacteria employ various sensors feeding into multiple signal transduction pathways. Signal recognition by bacterial sensors is studied mainly in a few model organisms, but advances in genome sequencing and analysis offer new ways of exploring the sensory repertoire of many understudied organisms. The human gut is a natural target of this line of study: it is a nutrient-rich and dynamic environment and is home to thousands of bacterial species whose activities impact human health. Many gut commensals are also poorly studied compared to model organisms and are mainly known through their genome sequences. To begin exploring the signals human gut commensals sense and respond to, we have designed a framework that enables the identification of sensory domains, prediction of signals that they recognize, and experimental verification of these predictions. We validate this framework's functionality by systematically identifying amino acid sensors in selected bacterial genomes and metagenomes, characterizing their amino acid binding properties, and demonstrating their signal transduction potential.IMPORTANCESignal transduction is a central process governing how bacteria sense and respond to their environment. The human gut is a complex environment with many living organisms and fluctuating streams of nutrients. One gut inhabitant, Escherichia coli, is a model organism for studying signal transduction. However, E. coli is not representative of most gut microbes, and signaling pathways in the thousands of other organisms comprising the human gut microbiota remain poorly understood. This work provides a foundation for how to explore signals recognized by these organisms.

3.
Neuroendocrinology ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718758

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) plays a critical role of reproduction in vertebrate since its discovery. Recently, a regulatory role of GnIH in appetite and the energy metabolism has emerged, despite its precise physiological mechanisms remain unknown. Thus, the present study evaluated the effects of a single or long-term GnIH treatments (administered via intraperitoneal injection) on the food intake, weight and glucolipid metabolism of chickens, while investigated the possible neuroendocrinology factors and its mechanism that involved in GnIH-induced obesity and glucolipid metabolism disorder. Our results showed that the intraperitoneal administration of GnIH to chickens resulted in marked body mass increased, hyperlipidemia, hyperglycemia and glucose intolerance. Subsequently, the results of metabolomics and pharmacological inhibition of 5-HT2C receptor studies revealed that blocked 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight and the levels of blood glucose and lipid, resulted in GnIH-induced hyperglycaemia, hyperlipidemia and hepatic lipid deposition even worse, suggesting that peripheral 5-HT via 5-HT2C receptor may act as a negative feedback regulator to interplay with GnIH and jointly homeostatic control of energy balance in chickens. Our present study provide evidence of the cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level and to propose a molecular basis for these interactions, suggesting that functional interaction between GnIH and 5-HT may open new avenues to understand the mechanism of neuroendocrine network involved in appetite and energy metabolism as well as provide a new therapeutic strategy to prevent obesity, diabetes and metabolic disorders.

4.
ACS Cent Sci ; 10(3): 695-707, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38559296

ABSTRACT

We have discovered that hard, electrical conductors (e.g., metals or graphite) can be adhered to soft, aqueous materials (e.g., hydrogels, fruit, or animal tissue) without the use of an adhesive. The adhesion is induced by a low DC electric field. As an example, when 5 V DC is applied to graphite slabs spanning a tall cylindrical gel of acrylamide (AAm), a strong adhesion develops between the anode (+) and the gel in about 3 min. This adhesion endures after the field is removed, and we term it as hard-soft electroadhesion or EA[HS]. Depending on the material, adhesion occurs at the anode (+), cathode (-), or both electrodes. In many cases, EA[HS] can be reversed by reapplying the field with reversed polarity. Adhesion via EA[HS] to AAm gels follows the electrochemical series: e.g., it occurs with copper, lead, and tin but not nickel, iron, or zinc. We show that EA[HS] arises via electrochemical reactions that generate chemical bonds between the electrode and the polymers in the gel. EA[HS] can create new hybrid materials, thus enabling applications in robotics, energy storage, and biomedical implants. Interestingly, EA[HS] can even be achieved underwater, where typical adhesives cannot be used.

5.
Opt Express ; 32(6): 10022-10032, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571223

ABSTRACT

Optical differential operation is the basic principle of optical image edge detection, which has the advantages of high efficiency, simple structure and markerless compared with the traditional digital image processing methods. In this paper, we propose an optical differential operation with high contrast based on the photonic spin Hall effect in a Weyl semimetal, which enables to switch between one- and two-dimensional edge detection. Due to the unique optical and electrical properties of the Weyl semimetal, a transport model for the differential operation is established, which is closely related to the beam shifts. By tuning the incidence conditions, we effectively manipulate the in-plane and transverse shifts to switch differential operations between one and two dimensions. The contrast of the differential operation is further regulated by changing the physical parameters of the Weyl semimetal, and can be improved by two orders of magnitude compared to the conventional differentiator. This study provides new possibilities in edge detection and image processing owing to the advantages of switchable dimension and high contrast.

6.
RSC Adv ; 14(12): 8313-8321, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38469185

ABSTRACT

Lithium niobate (LiNbO3) single crystals are a kind of ferroelectric material with a high piezoelectric coefficient and Curie temperature, which is suitable for the preparation of piezoelectric pressure sensors. However, there is little research reporting on the use of LiNbO3 single crystals to prepare piezoelectric pressure sensors. Therefore, in this paper, LiNbO3 was used to prepare piezoelectric pressure sensors to study the feasibility of using LiNbO3 single crystals as a sensitive material for piezoelectric pressure sensors. In addition, chemical mechanical polishing (CMP) technology was used to prepare LiNbO3 crystals with different thicknesses to study the influence of these LiNbO3 crystals on the electric charge output of the sensors. The results showed that the sensitivity of a 300 µm sample (0.218 mV kPa-1) was about 1.23 times that of a 500 µm sample (0.160 mV kPa-1). Low-temperature polymer heterogeneous integration and oxygen plasma activation technologies were used to realize the heterogeneous integration of LiNbO3 and silicon to prepare piezoelectric pressure sensors, which could significantly improve the sensitivity of the sensor by approximately 16.06 times (2.569 mV kPa-1) that of the original sample (0.160 mV kPa-1) due to an appropriate residual stress that did not shatter LiNbO3 or silicon, thus providing a possible method for integrating piezoelectric pressure sensors and integrated circuits.

7.
Angew Chem Int Ed Engl ; 63(17): e202401575, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38357753

ABSTRACT

A general approach to the direct deoxygenative transformation of primary, secondary, and tertiary alcohols has been developed. It undergoes through phosphoranyl radical intermediates generated by the addition of exogenous iodine radical to trivalent alkoxylphosphanes. Since these alkoxylphosphanes are readily in situ obtained from alcohols and commercially available, inexpensive chlorodiphenylphosphine, a diverse range of alcohols with various functional groups can be utilized to proceed deoxygenative cross-couplings with alkenes or aryl iodides. The selective transformation of polyhydroxy substrates and the rapid synthesis of complex organic molecules are also demonstrated with this method.

8.
eNeuro ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408869

ABSTRACT

GPR4 is a proton-sensing G protein-coupled receptor implicated in many peripheral and central physiological processes. GPR4 expression has previously been assessed only via detection of the cognate transcript or indirectly, by use of fluorescent reporters. In this work, CRISPR/Cas9 knock-in technology was used to encode a hemagglutinin (HA) epitope tag within the endogenous locus of Gpr4 and visualize GPR4-HA in the mouse central nervous system using a specific, well characterized HA antibody; GPR4 expression was further verified by complementary Gpr4 mRNA detection. HA immunoreactivity was found in a limited set of brain regions, including in the retrotrapezoid nucleus (RTN), serotonergic raphe nuclei, medial habenula, lateral septum, and several thalamic nuclei. GPR4 expression was not restricted to cells of a specific neurochemical identity as it was observed in excitatory, inhibitory, and aminergic neuronal cell groups. HA immunoreactivity was not detected in brain vascular endothelium, despite clear expression of Gpr4 mRNA in endothelial cells. In the RTN, GPR4 expression was detected at the soma and in proximal dendrites along blood vessels and the ventral surface of the brainstem; HA immunoreactivity was not detected in RTN projections to two known target regions. This localization of GPR4 protein in mouse brain neurons corroborates putative sites of expression where its function has been previously implicated (e.g., CO2-regulated breathing by RTN), and provides a guide for where GPR4 could contribute to other CO2/H+ modulated brain functions. Finally, GPR4-HA animals provide a useful reagent for further study of GPR4 in other physiological processes outside of the brain.Significance Statement GPR4 is a proton-sensing G-protein coupled receptor whose expression is necessary for a number of diverse physiological processes including acid-base sensing in the kidney, immune function, and cancer progression. In the brain, GPR4 has been implicated in the hypercapnic ventilatory response mediated by brainstem neurons. While knockout studies in animals have clearly demonstrated its necessity for normal physiology, descriptions of GPR4 expression have been limited due to a lack of specific antibodies for use in mouse models. In this paper, we implemented a CRISPR/Cas9 knock-in approach to incorporate the coding sequence for a small epitope tag into the locus of GPR4. Using these mice, we were able to describe GPR4 protein expression directly for the first time.

9.
J Clin Neurosci ; 121: 114-118, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387113

ABSTRACT

BACKGROUND: This study evaluates the potential of inflammatory biomarkers, especially the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), for early detection of hyperCKemia after seizures. Addressing the challenge of delayed hyperCKemia diagnosis, which can escalate to rhabdomyolysis, this research emphasizes the use of these accessible biomarkers. METHODS: Conducted retrospectively, data from October 1, 2022, and October 1, 2023, were extracted from electronic medical records. Following univariate analysis (P-value < 0.05 for selection), Spearman's rank correlation and binary logistics regression were employed to examine the relationship between hyperCKemia and various clinical variables. Receiver operating characteristic curves (ROCs) defined the cut-off values for seizure-related hyperCKemia. RESULTS: Among 98 seizure patients, 31 (31.63 %) developed hyperCKemia. Notable differences in leukocytes, neutrophils, CRP, and NLR levels were observed between hyperCKemia and normal CK groups (P < 0.05). Leukocytes, NLR, and CRP correlated with hyperCKemia, exhibiting odds ratios of 1.24 (95 % CI: 1.11-1.39, P < 0.001), 1.03 (95 % CI: 1.01-1.05, P = 0.001), and 1.22 (95 % CI: 1.09-1.35, P = 0.017). The optimal cut-off values were established as 9.78 × 10^9/L for leukocytes, 32.40 mg/L for CRP, and 7.35 for NLR. CONCLUSION: Elevated levels of leukocytes, CRP, and NLR post-seizure are strong indicators of hyperCKemia risk, with significant implications for enhancing clinical decision-making and patient care strategies.


Subject(s)
Blood Platelets , Lymphocytes , Humans , Platelet Count , Prognosis , Retrospective Studies , Biomarkers , Neutrophils , Risk Assessment , Seizures/diagnosis
10.
J Nanobiotechnology ; 22(1): 13, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167034

ABSTRACT

In recent years, the environmental health issue of microplastics has aroused an increasingly significant concern. Some studies suggested that exposure to polystyrene microplastics (PS-MPs) may lead to renal inflammation and oxidative stress in animals. However, little is known about the essential effects of PS-MPs with high-fat diet (HFD) on renal development and microenvironment. In this study, we provided the single-cell transcriptomic landscape of the kidney microenvironment induced by PS-MPs and HFD in mouse models by unbiased single-cell RNA sequencing (scRNA-seq). The kidney injury cell atlases in mice were evaluated after continued PS-MPs exposure, or HFD treated for 35 days. Results showed that PS-MPs plus HFD treatment aggravated the kidney injury and profibrotic microenvironment, reshaping mouse kidney cellular components. First, we found that PS-MPs plus HFD treatment acted on extracellular matrix organization of renal epithelial cells, specifically the proximal and distal convoluted tubule cells, to inhibit renal development and induce ROS-driven carcinogenesis. Second, PS-MPs plus HFD treatment induced activated PI3K-Akt, MAPK, and IL-17 signaling pathways in endothelial cells. Besides, PS-MPs plus HFD treatment markedly increased the proportions of CD8+ effector T cells and proliferating T cells. Notably, mononuclear phagocytes exhibited substantial remodeling and enriched in oxidative phosphorylation and chemical carcinogenesis pathways after PS-MPs plus HFD treatment, typified by alterations tissue-resident M2-like PF4+ macrophages. Multispectral immunofluorescence and immunohistochemistry identified PF4+ macrophages in clear cell renal cell carcinoma (ccRCC) and adjacent normal tissues, indicating that activate PF4+ macrophages might regulate the profibrotic and pro-tumorigenic microenvironment after renal injury. In conclusion, this study first systematically revealed molecular variation of renal cells and immune cells in mice kidney microenvironment induced by PS-MPs and HFD with the scRNA-seq approach, which provided a molecular basis for decoding the effects of PS-MPs on genitourinary injury and understanding their potential profibrotic and carcinogenesis in mammals.


Subject(s)
Microplastics , Polystyrenes , Mice , Animals , Microplastics/toxicity , Plastics , Single-Cell Gene Expression Analysis , Diet, High-Fat/adverse effects , Endothelial Cells , Phosphatidylinositol 3-Kinases , Kidney , Carcinogenesis , Mammals , Tumor Microenvironment
11.
Diabetol Metab Syndr ; 16(1): 3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172995

ABSTRACT

BACKGROUND: Randomized controlled trials have found that once-weekly insulin resulted in greater glycemic control compared to once-daily insulin in patients with type 2 diabetes. However, no direct comparisons have been made between different types of once-weekly insulin thus far. This systematic review and network meta-analysis aimed to evaluate the effect of the two most advanced once-weekly insulin analogues, namely insulin icodec and insulin Fc, in patients with type 2 diabetes. METHODS: We conducted a thorough search in the databases PubMed, Embase, and the Cochrane Central Register of Controlled Trials. The search included articles published from the beginning to October 10, 2023, with no language limitations. Our aim was to conduct a systematic review of randomized controlled trials that investigated the effectiveness and safety of once-weekly insulin in individuals with type 2 diabetes. Our primary outcome was to evaluate excellent glycemic control, defined as patients achieving glycated hemoglobin levels below 7%. RESULTS: We identified a total of 7 trials involving 2829 patients. The results showed that once-weekly insulin icodec is more effective than once-weekly insulin Fc (RR 1.59 [95% CI 1.08-2.38]), once-daily degludec (RR 1.43 [95% CI 1.14-1.83]), and once-daily glargine (RR 1.15 [95% CI 1.00-1.41]). Moreover, the incidence of severe hypoglycemia was lower with once-weekly insulin icodec compared to once-daily degludec (RR 0.00016 [95% CI 0 to 0.41]). However, no significant difference in the incidence of severe hypoglycemia was observed between once-weekly insulin icodec and once-daily glargine (RR 0.39 [95% CI 0.03 to 4.83]). CONCLUSIONS: In patients with type 2 diabetes, once-weekly insulin icodec achieved superior glycemic control compared to once-weekly insulin Fc, with no significant difference in the occurrence of hypoglycemia. The ranking probability results have shown that one weekly icodec seems to be the preferred option in patients with type 2 diabetes. TRIAL REGISTRATION: PROSPERO Identifier: CRD42023470894.

12.
MedComm (2020) ; 5(1): e461, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222314

ABSTRACT

Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that form under pathological conditions. However, the predictive value of TLS in clear cell renal cell carcinoma (ccRCC) for immunotherapies remains unclear. We comprehensively assessed the implications for prognosis and immunological responses of the TLS spatial and maturation heterogeneity in 655 ccRCC patients. A higher proportion of early-TLS was found in peritumoral TLS, while intratumoral TLS mainly comprised secondary follicle-like TLS (SFL-TLS), indicating markedly better survival. Notably, presence of TLS, especially intratumoral TLS and SFL-TLS, significantly correlated with better survival and objective reflection rate for ccRCC patients receiving anti-Programmed Cell Death Protein-1 (PD-1)/Programmed Cell Death-Ligand-1 (PD-L1) immunotherapies. In peritumoral TLS cluster, primary follicle-like TLS, the proportion of tumor-associated macrophages, and Treg infiltration in the peritumoral regions increased prominently, suggesting an immunosuppressive tumor microenvironment. Interestingly, spatial transcriptome annotation and multispectral fluorescence showed that an abundance of mature plasma cells within mature TLS has the capacity to produce IgA and IgG, which demonstrate significantly higher objective response rates and a superior prognosis for ccRCC patients subjected to immunotherapy. In conclusion, this study revealed the implications of TLS spatial and maturation heterogeneity on the immunological status and clinical responses, allowing the improvement of precise immunotherapies of ccRCC.

13.
Sci Total Environ ; 912: 168308, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37977403

ABSTRACT

Recent studies have discovered that tiny particles of microplastics (MPs) at the nano-scale level can enter the body of organisms from the environment, potentially causing metabolic ailments. However, further investigation is required to understand the alterations in the immune microenvironment associated with non-alcoholic fatty liver disease (NAFLD) occurrence following exposure to MPs. Experiments were performed using mice, which were given a normal chow or high-fat diet (NCD or HFD, respectively) plus free drinking of sterile water with or without MPs, respectively. Employing an impartial technique known as unbiased single-cell RNA-sequencing (scRNA-seq), the cellular (single-cell) pathology landscape of NAFLD and related changes in the identified immune cell populations induced following MPs plus HFD treatment were assessed. The results showed that mice in the HFD groups had remarkably greater NAFLD activity scores than those from the NCD groups. Moreover, administration of MPs plus HFD further worsened the histopathological changes in the mice's liver, leading to hepatic steatosis, inflammatory cell infiltrations and ballooning degeneration. Following the construction of a sing-cell resolution transcriptomic atlas of 43,480 cells in the mice's livers of the indicated groups, clear cellular heterogeneity and potential cell-to-cell cross-talk could be observed. Specifically, we observed that MPs exacerbated the pro-inflammatory response and influenced the stemness of hepatocytes during HFD feeding. Importantly, treatment with MPs significantly increase the infiltration of the infiltrating liver-protecting Vsig4+ macrophages in the liver of the NAFLD mouse model while remarkably decreasing the angiogenic S100A6+ macrophage subpopulation. Furthermore, mice treated with MPs plus HFD exhibited significantly increased recruitment of CD4+ cells and heightened exhaustion of CD8+ T cells than those from the control group, characteristics typically associated with the dysregulation of immune homeostasis and severe inflammatory damage. Overall, this study offers valuable perspectives into comprehending the potential underlying cellular mechanisms and regulatory aspects of the microenvironment regarding MPs in the development of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Noncommunicable Diseases , Mice , Animals , Microplastics/metabolism , Plastics/metabolism , Single-Cell Gene Expression Analysis , Liver/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
14.
Immunol Rev ; 321(1): 181-198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37403660

ABSTRACT

Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Nanoparticle Drug Delivery System , Immunogenic Cell Death , Prospective Studies , Antineoplastic Agents/therapeutic use , Immunotherapy , Tumor Microenvironment
15.
Immunol Rev ; 321(1): 211-227, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37715546

ABSTRACT

Copper is an essential nutrient for maintaining enzyme activity and transcription factor function. Excess copper results in the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which correlates to the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cuproptosis exerts an indispensable role in cancer progression, which is considered a promising strategy for cancer therapy. Cancer immunotherapy has gained extensive attention owing to breakthroughs in immune checkpoint blockade; furthermore, cuproptosis is strongly connected to the modulation of antitumor immunity. Thus, a thorough recognition concerning the mechanisms involved in the modulation of copper metabolism and cuproptosis may facilitate improvement in cancer management. This review outlines the cellular and molecular mechanisms and characteristics of cuproptosis and the links of the novel regulated cell death modality with human cancers. We also review the current knowledge on the complex effects of cuproptosis on antitumor immunity and immune response. Furthermore, potential agents that elicit cuproptosis pathways are summarized. Lastly, we discuss the influence of cuproptosis induction on the tumor microenvironment as well as the challenges of adding cuproptosis regulators to therapeutic strategies beyond traditional therapy.


Subject(s)
Copper , Neoplasms , Humans , Neoplasms/therapy , Immunotherapy , Cell Death , Homeostasis , Apoptosis , Tumor Microenvironment
16.
Biol Trace Elem Res ; 202(5): 2042-2051, 2024 May.
Article in English | MEDLINE | ID: mdl-37648935

ABSTRACT

Zinc oxide nanoparticles (nano-ZnO) have diverse applications in numerous biomedical processes. The present study explored the effects of these nanoparticles on antioxidation, inflammation, tight junction integrity, and apoptosis in heat-stressed bovine intestinal epithelial cells (BIECs). Primary BIECs that were isolated and cultured from calves either were subjected to heat stress alone (42°C for 6 h) or were simultaneously heat-stressed and treated with nano-ZnO (0.8 µg/mL). Cell viability, apoptosis, and expression of genes involved in antioxidation (Nrf2, HO-1, SOD1, and GCLM), inflammation-related genes (TLR4, NF-κB, TNF-α, IL-6, IL-8, and IL-10), intestinal barrier genes (Claudin, Occludin, and ZO-1), and apoptosis-related genes (Cyt-c, Caspase-3, and Caspase-9) were assessed to evaluate the effect of nano-ZnO on heat-stressed BIECs. The nanoparticles significantly increased cell viability and decreased the rate of apoptosis of BIECs induced by heat stress. In addition, nano-ZnO promoted the expression of antioxidant-related genes HO-1 and GCLM and anti-inflammatory cytokine gene IL-10, and inhibited the pro-inflammatory cytokine-related genes IL-6 and IL-8. The nanoparticles also enhanced expression of the Claudin and ZO-1 genes, and decreased expression of the apoptosis-related genes Cyt-c and Caspase-3. These results reveal that nano-ZnO improve the antioxidant and immune capacity of BIECs and mitigate apoptosis of intestinal epithelial cells induced by heat stress. Thus, nano-ZnO have potential for detrimental the adverse effects of heat stress in dairy cows.


Subject(s)
Nanoparticles , Zinc Oxide , Cattle , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Interleukin-10 , Zinc Oxide/pharmacology , Caspase 3 , Interleukin-6 , Tight Junctions/metabolism , Interleukin-8 , Inflammation , Epithelial Cells/metabolism , Apoptosis , Claudins
17.
Environ Pollut ; 342: 123061, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38042467

ABSTRACT

The widespread promotion attempt of biodegradable plastics is considered as an effective solution to address conventional plastic pollution. However, the interaction of microplastics (MPs) easily broken down from biodegradable plastics with the coexisting pollutants in aquatic environments has gained less attention. Herein, we investigated the effects of the aging process and environmental factors on copper (Cu(II)) adsorption behavior by biodegradable polylactic acid and conventional polystyrene MPs. Results demonstrated that the aging process significantly altered physicochemical properties of both types of MPs, and PLA showed less resistance to aging. The aged polylactic acid MPs (aged-PLA) exhibited the far highest Cu(II) maximum adsorption capacity (7.13 mg/g) mainly due to its abundant oxygen-containing functional groups (OCFGs), followed by pristine polylactic acid (PLA, 6.08 mg/g), aged polystyrene (aged-PS, 0.489 mg/g) and pristine polystyrene (PS, 0.365 mg/g). The adsorption kinetics of Cu(II) on PLA MPs were controlled by film and intraparticle diffusion, while film diffusion governed the Cu(II) adsorption onto PS MPs. In addition to roles of rougher surface structure, greater surface area and pore filling, the complexation of OCFGs and electrostatic interaction were critical to the adsorption mechanism of aged-PLA and aged-PS, and cation-π interaction was associated with adsorption of aged-PS. Moreover, the adsorption capacity of Cu(II) on aged MPs gradually grew with the increasing pH from 4 to 7. Besides, humic acid significantly promoted the adsorption of Cu(II) at a low concentration (0-20 mg/L) due to the formation of binary mixtures of MPs-HA but inhibited the adsorption at a high concentration (50 mg/L) because of its competitive effect, suggesting the dual roles of humic acid in the adsorption process. Overall, our findings provide a better understanding of the adsorption behavior of metals on biodegradable MPs and emphasize their non-negligible risk as carriers of contaminant.


Subject(s)
Biodegradable Plastics , Water Pollutants, Chemical , Microplastics/chemistry , Plastics/chemistry , Polystyrenes/chemistry , Copper , Adsorption , Humic Substances , Water Pollutants, Chemical/analysis , Polyesters
19.
J Immunother Cancer ; 11(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38040418

ABSTRACT

BACKGROUND: Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop postnatally in non-lymphoid tissues and are associated with pathological conditions. TLS typically comprise B-cell follicles containing and are encompassed by T- cell zones and dendritic cells. The prognostic and predictive value of TLS in the tumor microenvironment (TME) as potential mediators of antitumor immunity have gained interest. However, the precise relationship between localization and maturation of TLS and the clinical outcome of their presence in clear cell renal cell carcinoma (ccRCC) is yet to be elucidated. METHODS: Immunohistochemistry and multispectral fluorescence were used to evaluate the TLS heterogeneity along with TME cell-infiltrating characterizations. A thorough investigation of the prognostic implications of the TLS heterogeneity in 395 patients with ccRCC from two independent cohorts was conducted. Associations between TLS heterogeneity and immunologic activity were assessed by quantifying the immune cell infiltration. RESULTS: Infiltrated TLS were identified in 34.2% of the ccRCC samples (N=395). These TLS were found to be tumor-proximal, tumor-distal, or both in 37.8%, 74.1%, and 11.9% of the TLS-positive cases, respectively. A higher proportion of early TLS was found in tumor-distal TLS (p=0.016), while tumor-proximal TLS primarily comprised secondary follicle-like structures (p=0.004). In the main study cohort (Fudan University Shanghai Cancer Center, N=290), Kaplan-Meier analyses revealed a significant correlation between the presence of tumor-proximal TLS and improved progression-free survival (PFS, p<0.001) and overall survival (OS, p=0.002). Conversely, the presence of tumor-distal TLS was associated with poor PFS (p=0.02) and OS (p=0.021). These findings were further validated in an external validation set of 105 patients with ccRCC. Notably, the presence of mature TLS (namely secondary follicle-like TLS, with CD23+ germinal center) was significantly associated with better clinical outcomes in patients with ccRCC. Furthermore, novel nomograms incorporating the presence of tumor-proximal TLS demonstrated remarkable predictability for the 8-year outcomes of resected ccRCC (area under the curve >0.80). Additionally, ccRCC samples with tumor-distal TLS enriched with primary follicle-like TLS exhibited higher programmed death-ligand 1 tumor-associated macrophages levels and regulatory T cells infiltration in the tumor-distal region, indicative of a suppressive TME. CONCLUSION: This study for the first time elucidates the impact of TLS localization and maturation heterogeneities on the divergent clinical outcomes of ccRCC. The findings reveal that most TLS in ccRCC are located in the tumor-distal area and are associated with immature, immunosuppressive characterizations. Furthermore, our findings corroborate previous research demonstrating that tumor-proximal TLS were associated with favorable clinical outcomes.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Tertiary Lymphoid Structures , Humans , Carcinoma, Renal Cell/pathology , China , Prognosis , Kidney Neoplasms/pathology , Tumor Microenvironment
20.
Nature ; 624(7991): 425-432, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38057665

ABSTRACT

Maintenance of renal function and fluid transport are essential for vertebrates and invertebrates to adapt to physiological and pathological challenges. Human patients with malignant tumours frequently develop detrimental renal dysfunction and oliguria, and previous studies suggest the involvement of chemotherapeutic toxicity and tumour-associated inflammation1,2. However, how tumours might directly modulate renal functions remains largely unclear. Here, using conserved tumour models in Drosophila melanogaster3, we characterized isoform F of ion transport peptide (ITPF) as a fly antidiuretic hormone that is secreted by a subset of yki3SA gut tumour cells, impairs renal function and causes severe abdomen bloating and fluid accumulation. Mechanistically, tumour-derived ITPF targets the G-protein-coupled receptor TkR99D in stellate cells of Malpighian tubules-an excretory organ that is equivalent to renal tubules4-to activate nitric oxide synthase-cGMP signalling and inhibit fluid excretion. We further uncovered antidiuretic functions of mammalian neurokinin 3 receptor (NK3R), the homologue of fly TkR99D, as pharmaceutical blockade of NK3R efficiently alleviates renal tubular dysfunction in mice bearing different malignant tumours. Together, our results demonstrate a novel antidiuretic pathway mediating tumour-renal crosstalk across species and offer therapeutic opportunities for the treatment of cancer-associated renal dysfunction.


Subject(s)
Antidiuretic Agents , Kidney Diseases , Neoplasms , Neuropeptides , Receptors, Neurokinin-3 , Animals , Humans , Mice , Antidiuretic Agents/metabolism , Cyclic GMP/metabolism , Disease Models, Animal , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Kidney Diseases/complications , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Malpighian Tubules/cytology , Malpighian Tubules/metabolism , Neoplasms/complications , Neoplasms/metabolism , Nitric Oxide Synthase/metabolism , Receptors, Neurokinin-3/antagonists & inhibitors , Receptors, Neurokinin-3/metabolism , Xenograft Model Antitumor Assays , Arginine Vasopressin/metabolism , Drosophila Proteins/metabolism , Neuropeptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...