Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell Chem Biol ; 31(5): 932-943.e8, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759619

ABSTRACT

Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate contributions to purine nucleotides from salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic or lymph node T cells) synthesize purines de novo. Shortage of 1C units for T cell purine synthesis is accordingly a potential bottleneck for anti-tumor immunity. Supplementing 1C units by infusing formate drives formate assimilation into purines in tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling kinetic control of formate production. Safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade in MC38 tumors, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.


Subject(s)
Carbon , Mice, Inbred C57BL , Purines , Animals , Mice , Purines/chemistry , Purines/pharmacology , Carbon/chemistry , Carbon/metabolism , Immune Checkpoint Inhibitors/pharmacology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Formates/chemistry , Formates/metabolism , Formates/pharmacology , Methanol/chemistry , Methanol/pharmacology , Female , Humans , Cell Line, Tumor
2.
Nat Microbiol ; 9(5): 1207-1219, 2024 May.
Article in English | MEDLINE | ID: mdl-38594311

ABSTRACT

Pseudomonas aeruginosa is a leading cause of hospital-acquired infections for which the development of antibiotics is urgently needed. Unlike most enteric bacteria, P. aeruginosa lacks enzymes required to scavenge exogenous thymine. An appealing strategy to selectively target P. aeruginosa is to disrupt thymidine synthesis while providing exogenous thymine. However, known antibiotics that perturb thymidine synthesis are largely inactive against P. aeruginosa.Here we characterize fluorofolin, a dihydrofolate reductase (DHFR) inhibitor derived from Irresistin-16, that exhibits significant activity against P. aeruginosa in culture and in a mouse thigh infection model. Fluorofolin is active against a wide range of clinical P. aeruginosa isolates resistant to known antibiotics. Metabolomics and in vitro assays using purified folA confirm that fluorofolin inhibits P. aeruginosa DHFR. Importantly, in the presence of thymine supplementation, fluorofolin activity is selective for P. aeruginosa. Resistance to fluorofolin can emerge through overexpression of the efflux pumps MexCD-OprJ and MexEF-OprN, but these mutants also decrease pathogenesis. Our findings demonstrate how understanding species-specific genetic differences can enable selective targeting of important pathogens while revealing trade-offs between resistance and pathogenesis.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Tetrahydrofolate Dehydrogenase , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Animals , Mice , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Folic Acid Antagonists/pharmacology , Folic Acid/metabolism , Drug Resistance, Bacterial , Disease Models, Animal , Thymine/metabolism , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Female
3.
Metabolites ; 14(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38668312

ABSTRACT

Orbitrap mass spectrometry in full scan mode enables the simultaneous detection of hundreds of metabolites and their isotope-labeled forms. Yet, sensitivity remains limiting for many metabolites, including low-concentration species, poor ionizers, and low-fractional-abundance isotope-labeled forms in isotope-tracing studies. Here, we explore selected ion monitoring (SIM) as a means of sensitivity enhancement. The analytes of interest are enriched in the orbitrap analyzer by using the quadrupole as a mass filter to select particular ions. In tissue extracts, SIM significantly enhances the detection of ions of low intensity, as indicated by improved signal-to-noise (S/N) ratios and measurement precision. In addition, SIM improves the accuracy of isotope-ratio measurements. SIM, however, must be deployed with care, as excessive accumulation in the orbitrap of similar m/z ions can lead, via space-charge effects, to decreased performance (signal loss, mass shift, and ion coalescence). Ion accumulation can be controlled by adjusting settings including injection time and target ion quantity. Overall, we suggest using a full scan to ensure broad metabolic coverage, in tandem with SIM, for the accurate quantitation of targeted low-intensity ions, and provide methods deploying this approach to enhance metabolome coverage.

4.
Cell Metab ; 36(1): 103-115.e4, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38171330

ABSTRACT

The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Using rodent models, here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable-isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered, but SHMT2- and serine-dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis is largely insensitive to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 a major glycine-consuming enzyme.


Subject(s)
Glycine Hydroxymethyltransferase , Glycine , Glycine Hydroxymethyltransferase/genetics , Homeostasis , Carbon , Serine
5.
ACS Biomater Sci Eng ; 9(12): 6935-6946, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37941371

ABSTRACT

ß-Type Ti alloys have been widely investigated as implant materials owing to their excellent mechanical properties, corrosion resistance, and biocompatibility. In the present work, the effects of Zr on the microstructure, mechanical properties, and corrosion behaviors of Ti-Zr-Mo-Mn alloys were systematically studied. With the increase of Zr content, the phase composition gradually changed from intragranular-α + ß of (TZ)5:1MM alloy to grain-boundary-α + ß of (TZ)2:1MM alloy and finally transferred to a single ß phase structure of (TZ)1:1MM alloy. The (TZ)1:1MM alloy exhibited a good mechanical combination with a yield strength of 750.8 MPa, an elastic modulus of 61.3 GPa, and a tensile ductility of 14.6%. Moreover, the addition of Zr can effectively stabilize the passivation film and reduce the sensitivity of microgalvanic corrosion in simulated body fluid, leading to enhanced corrosion resistance in the TZMM alloys. X-ray photoelectron spectroscopy analysis together with the ion-sputtering technique revealed that the passivation films formed on TZMM alloys possessed a bilayered structure (outer Ti+Zr mixed-oxide layer and inner Zr-oxide-rich layer), in which the inner Zr oxide layer plays an important role in the corrosion resistance of the TZMM alloys. In vitro biocompatibility evaluations demonstrated that the TZMM alloys can support cell adhesion and proliferation with high biocompatibility comparable to that of CP-Ti, while in vivo biocompatibility evaluations validated the bone osteointegration ability of TZMM alloys after long-term implantation. The above results indicate that novel TZMM alloys are promising candidates for implant material.


Subject(s)
Biocompatible Materials , Titanium , Materials Testing , Corrosion , Alloys/chemistry , Oxides
6.
bioRxiv ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37961420

ABSTRACT

Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate the contributions to purine nucleotides of salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic T cells) synthesize purines de novo. Purine synthesis requires two 1C units, which come from serine catabolism and circulating formate. Shortage of 1C units is a potential bottleneck for anti-tumor immunity. Elevating circulating formate drives its usage by tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling control of formate-production kinetics. In MC38 tumors, safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.

7.
Nat Metab ; 4(12): 1660-1673, 2022 12.
Article in English | MEDLINE | ID: mdl-36376563

ABSTRACT

The tumour microenvironment possesses mechanisms that suppress anti-tumour immunity. Itaconate is a metabolite produced from the Krebs cycle intermediate cis-aconitate by the activity of immune-responsive gene 1 (IRG1). While it is known to be immune modulatory, the role of itaconate in anti-tumour immunity is unclear. Here, we demonstrate that myeloid-derived suppressor cells (MDSCs) secrete itaconate that can be taken up by CD8+ T cells and suppress their proliferation, cytokine production and cytolytic activity. Metabolite profiling, stable-isotope tracing and metabolite supplementation studies indicated that itaconate suppressed the biosynthesis of aspartate and serine/glycine in CD8+ T cells to attenuate their proliferation and function. Host deletion of Irg1 in female mice bearing allografted tumours resulted in decreased tumour growth, inhibited the immune-suppressive activities of MDSCs, promoted anti-tumour immunity of CD8+ T cells and enhanced the anti-tumour activity of anti-PD-1 antibody treatment. Furthermore, we found a significant negative correlation between IRG1 expression and response to PD-1 immune checkpoint blockade in patients with melanoma. Our findings not only reveal a previously unknown role of itaconate as an immune checkpoint metabolite secreted from MDSCs to suppress CD8+ T cells, but also establish IRG1 as a myeloid-selective target in immunometabolism whose inhibition promotes anti-tumour immunity and enhances the efficacy of immune checkpoint protein blockade.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Mice , Female , Animals , CD8-Positive T-Lymphocytes , Neoplasms/metabolism , Succinates/pharmacology , Succinates/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Tumor Microenvironment
8.
Blood ; 139(4): 538-553, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34624079

ABSTRACT

Burkitt lymphoma (BL) is an aggressive lymphoma type that is currently treated by intensive chemoimmunotherapy. Despite the favorable clinical outcome for most patients with BL, chemotherapy-related toxicity and disease relapse remain major clinical challenges, emphasizing the need for innovative therapies. Using genome-scale CRISPR-Cas9 screens, we identified B-cell receptor (BCR) signaling, specific transcriptional regulators, and one-carbon metabolism as vulnerabilities in BL. We focused on serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in one-carbon metabolism. Inhibition of SHMT2 by either knockdown or pharmacological compounds induced anti-BL effects in vitro and in vivo. Mechanistically, SHMT2 inhibition led to a significant reduction of intracellular glycine and formate levels, which inhibited the mTOR pathway and thereby triggered autophagic degradation of the oncogenic transcription factor TCF3. Consequently, this led to a collapse of tonic BCR signaling, which is controlled by TCF3 and is essential for BL cell survival. In terms of clinical translation, we also identified drugs such as methotrexate that synergized with SHMT inhibitors. Overall, our study has uncovered the dependency landscape in BL, identified and validated SHMT2 as a drug target, and revealed a mechanistic link between SHMT2 and the transcriptional master regulator TCF3, opening up new perspectives for innovative therapies.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/metabolism , Glycine Hydroxymethyltransferase/antagonists & inhibitors , Glycine Hydroxymethyltransferase/metabolism , Animals , Burkitt Lymphoma/genetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Discovery , Formates/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Glycine/metabolism , Glycine Hydroxymethyltransferase/genetics , Humans , Mice , Molecular Targeted Therapy , Proteolysis/drug effects
9.
Immunity ; 55(1): 65-81.e9, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34767747

ABSTRACT

Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.


Subject(s)
Inflammation/immunology , Mechanistic Target of Rapamycin Complex 1/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Purines/biosynthesis , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Cell Differentiation , Cytokines/metabolism , DNA Methylation , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Lymphocyte Activation , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Mice , Mice, Transgenic , Mutation/genetics , Signal Transduction
10.
Nat Metab ; 3(12): 1608-1620, 2021 12.
Article in English | MEDLINE | ID: mdl-34845393

ABSTRACT

Carbohydrate can be converted into fat by de novo lipogenesis, a process upregulated in fatty liver disease. Chemically, de novo lipogenesis involves polymerization and reduction of acetyl-CoA, using NADPH as the electron donor. The feedstocks used to generate acetyl-CoA and NADPH in lipogenic tissues remain, however, unclear. Here we show using stable isotope tracing in mice that de novo lipogenesis in adipose is supported by glucose and its catabolism via the pentose phosphate pathway to make NADPH. The liver, in contrast, derives acetyl-CoA for lipogenesis from acetate and lactate, and NADPH from folate-mediated serine catabolism. Such NADPH generation involves the cytosolic serine pathway in liver running in the opposite direction to that observed in most tissues and tumours, with NADPH made by the SHMT1-MTHFD1-ALDH1L1 reaction sequence. SHMT inhibition decreases hepatic lipogenesis. Thus, liver folate metabolism is distinctively wired to support cytosolic NADPH production and lipogenesis. More generally, while the same enzymes are involved in fat synthesis in liver and adipose, different substrates are used, opening the door to tissue-specific pharmacological interventions.


Subject(s)
Lipogenesis , Liver/metabolism , NADP/metabolism , Serine/metabolism , Acetyl Coenzyme A/metabolism , Adipose Tissue/metabolism , Aminohydrolases/metabolism , Animals , Fatty Acids/metabolism , Female , Folic Acid/metabolism , Formate-Tetrahydrofolate Ligase/metabolism , Glutamine/metabolism , Glycine Hydroxymethyltransferase/metabolism , Hepatocytes/metabolism , Lipid Metabolism , Male , Metabolic Networks and Pathways , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Mice , Multienzyme Complexes/metabolism , Oxidative Phosphorylation , Oxidoreductases Acting on CH-NH Group Donors/metabolism
11.
Nat Metab ; 3(11): 1512-1520, 2021 11.
Article in English | MEDLINE | ID: mdl-34799699

ABSTRACT

Mammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl-THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR). Cobalamin deficiency traps folates as 5-methyl-THF. Here, we show using isotope tracing that MTR is only a minor source of methionine in cell culture, tissues or xenografted tumours. Instead, MTR is required for cells to avoid folate trapping and assimilate 5-methyl-THF into other folate species. Under conditions of physiological extracellular folates, genetic MTR knockout in tumour cells leads to folate trapping, purine synthesis stalling, nucleotide depletion and impaired growth in cell culture and as xenografts. These defects are rescued by free folate but not one-carbon unit supplementation. Thus, MTR plays a crucial role in liberating THF for use in one-carbon metabolism.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Neoplasms/metabolism , Tetrahydrofolates/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Cell Line, Tumor , Cell Proliferation , Folic Acid/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Metabolic Networks and Pathways , Methionine/metabolism , Methylation , Mutation , Neoplasms/etiology , Purines/biosynthesis , Vitamin B 12 Deficiency/metabolism
12.
Cell Metab ; 33(2): 367-378.e5, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33472024

ABSTRACT

Glycolysis plays a central role in organismal metabolism, but its quantitative inputs across mammalian tissues remain unclear. Here we use 13C-tracing in mice to quantify glycolytic intermediate sources: circulating glucose, intra-tissue glycogen, and circulating gluconeogenic precursors. Circulating glucose is the main source of circulating lactate, the primary end product of tissue glycolysis. Yet circulating glucose highly labels glycolytic intermediates in only a few tissues: blood, spleen, diaphragm, and soleus muscle. Most glycolytic intermediates in the bulk of body tissue, including liver and quadriceps muscle, come instead from glycogen. Gluconeogenesis contributes less but also broadly to glycolytic intermediates, and its flux persists with physiologic feeding (but not hyperinsulinemic clamp). Instead of suppressing gluconeogenesis, feeding activates oxidation of circulating glucose and lactate to maintain glucose homeostasis. Thus, the bulk of the body slowly breaks down internally stored glycogen while select tissues rapidly catabolize circulating glucose to lactate for oxidation throughout the body.


Subject(s)
Diaphragm/metabolism , Muscle, Skeletal/metabolism , Spleen/metabolism , Animals , Blood Glucose/metabolism , Carbon Isotopes , Gluconeogenesis , Glycogen/blood , Glycogen/metabolism , Glycolysis , Male , Mice , Mice, Inbred C57BL
13.
Leukemia ; 35(2): 377-388, 2021 02.
Article in English | MEDLINE | ID: mdl-32382081

ABSTRACT

Folate metabolism enables cell growth by providing one-carbon (1C) units for nucleotide biosynthesis. The 1C units are carried by tetrahydrofolate, whose production by the enzyme dihydrofolate reductase is targeted by the important anticancer drug methotrexate. 1C units come largely from serine catabolism by the enzyme serine hydroxymethyltransferase (SHMT), whose mitochondrial isoform is strongly upregulated in cancer. Here we report the SHMT inhibitor SHIN2 and demonstrate its in vivo target engagement with 13C-serine tracing. As methotrexate is standard treatment for T-cell acute lymphoblastic leukemia (T-ALL), we explored the utility of SHIN2 in this disease. SHIN2 increases survival in NOTCH1-driven mouse primary T-ALL in vivo. Low dose methotrexate sensitizes Molt4 human T-ALL cells to SHIN2, and cells rendered methotrexate resistant in vitro show enhanced sensitivity to SHIN2. Finally, SHIN2 and methotrexate synergize in mouse primary T-ALL and in a human patient-derived xenograft in vivo, increasing survival. Thus, SHMT inhibition offers a complementary strategy in the treatment of T-ALL.


Subject(s)
Drug Synergism , Gene Expression Regulation, Leukemic , Glycine Hydroxymethyltransferase/antagonists & inhibitors , Methotrexate/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Cell Proliferation , Humans , Male , Mice , Mice, Inbred C57BL , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Materials (Basel) ; 12(2)2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30646606

ABSTRACT

This paper reports the numerical simulation of earthquake-damaged circular columns repaired with the combination of near-surface-mounted (NSM) basalt fiber reinforced polymer (BFRP) bars with external BFRP sheets jacketing at quasi-static loading. The numerical modeling was carried out with the nonlinear OpenSees software platform by using the BeamWithHinges element. In the simulations, the effect of the previous earthquake damage on the behavior of the repaired columns was taken into account, and a simple and effective material damage-accumulation model is proposed to modify the constitutive of materials in the unrepaired regions of the repaired columns. The developed numerical models were validated by comparing their quasi-static findings with those obtained from a previous experimental program, and a good agreement can be observed. Furthermore, the efficiency of the repair technique used in tests is evaluated via the developed numerical model.

SELECTION OF CITATIONS
SEARCH DETAIL
...