Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 839
Filter
1.
Nutrients ; 16(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39125443

ABSTRACT

Parental food education has been recognized among the important factors influencing children's food literacy; however, the intrinsic mechanisms through which this influence occurs are unclear. In this study, a mediation model was constructed to explore this issue, using the parent-child relationship and learning motivation as mediating variables. In total, 204 children, aged 9-14 years old, responded to questionnaires on parental food education, children's food literacy, the parent-child relationship, and learning motivation, which were used to measure the variables of interest. The results showed that parental food education was significantly and positively related to the parent-child relationship, learning motivation, and children's food literacy; the parent-child relationship was significantly and positively related to learning motivation; and learning motivation was significantly and positively related to children's food literacy. Parental food education influenced children's food literacy in the following two main ways: the mediating role of learning motivation and the chain-mediating roles of the parent-child relationship and learning motivation. In addition, we attempt to explore the moderating role of the teaching stage between parental food education and the parent-child relationship, learning motivation, and children's food literacy. In this paper, we discuss possible guidelines for family food education and children's health based on the findings of the current study.


Subject(s)
Learning , Motivation , Parent-Child Relations , Humans , Child , Female , Male , Adolescent , Surveys and Questionnaires , Parents/psychology , Health Literacy , Health Education/methods
2.
Wideochir Inne Tech Maloinwazyjne ; 19(1): 1-10, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38974765

ABSTRACT

Introduction: The Pfannenstiel incision is often used in gynecological Cesarean section; however, there is limited research on the use of the Pfannenstiel incision for specimen extraction in laparoscopic surgery for the treatment of colorectal cancer. Aim: To evaluate the safety of using the Pfannenstiel incision for specimen extraction in laparoscopic surgery for colorectal cancer patients. Material and methods: PubMed, Embase, Web of Science, Cochrane Library, CNKI, VIP and WanFangData were searched for studies published up to March 10, 2023; a random-effects model (RCT) and a fixed-effect model were used to evaluate the safety. Operative time, length of extraction skin incision, overall complications, superficial wound infection, organ/space surgical site infection and incisional hernia were evaluated. Results: A total of 5 studies were included in this research. There were no significant advantages in operation time, length of the incision, overall complications, superficial wound infection and organ/space surgical site in the Pfannenstiel group compared to the no Pfannenstiel group. However, the Pfannenstiel incision has a tendency to increase the length of the incision (SMD = 0.05; 95% CI = -0.22 to 0.33; p = 0.71) and the results of the remaining five (operative time,overall complications,incisional hernia, incisional infection and organ/space surgical site infection) are slightly skewed toward the Pfannenstiel incision. It is worth mentioning that incisional hernia (IH) may have an advantage in the Pfannenstiel group compared to the no Pfannenstiel group. Four studies were not at clear risk of bias and two studies were at risk of bias. Conclusions: Our study concludes that the Pfannenstiel incision has a good safety record and it is a good option for extracting specimens during laparoscopic surgery for colon cancer. The Pfannenstiel incision used for laparoscopic surgical specimen extraction has a significantly lower incidence of incisional hernia over no Pfannenstiel.

3.
Front Plant Sci ; 15: 1369501, 2024.
Article in English | MEDLINE | ID: mdl-38988641

ABSTRACT

Diameter and height are crucial morphological parameters of banana pseudo-stems, serving as indicators of the plant's growth status. Currently, in densely cultivated banana plantations, there is a lack of applicable research methods for the scalable measurement of phenotypic parameters such as diameter and height of banana pseudo-stems. This paper introduces a handheld mobile LiDAR and Inertial Measurement Unit (IMU)-fused laser scanning system designed for measuring phenotypic parameters of banana pseudo-stems within banana orchards. To address the challenges posed by dense canopy cover in banana orchards, a distance-weighted feature extraction method is proposed. This method, coupled with Lidar-IMU integration, constructs a three-dimensional point cloud map of the banana plantation area. To overcome difficulties in segmenting individual banana plants in complex environments, a combined segmentation approach is proposed, involving Euclidean clustering, Kmeans clustering, and threshold segmentation. A sliding window recognition method is presented to determine the connection points between pseudo-stems and leaves, mitigating issues caused by crown closure and heavy leaf overlap. Experimental results in banana orchards demonstrate that, compared with manual measurements, the mean absolute errors and relative errors for banana pseudo-stem diameter and height are 0.2127 cm (4.06%) and 3.52 cm (1.91%), respectively. These findings indicate that the proposed method is suitable for scalable measurements of banana pseudo-stem diameter and height in complex, obscured environments, providing a rapid and accurate inter-orchard measurement approach for banana plantation managers.

4.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38981852

ABSTRACT

Previously, we found that dCA1 A1-like polarization of astrocytes contributes a lot to the spatial memory deficit in methamphetamine abstinence mice. However, the underlying mechanism remains unclear, resulting in a lack of promising therapeutic targets. Here, we found that methamphetamine abstinence mice exhibited an increased M1-like microglia and A1-like astrocytes, together with elevated levels of interleukin 1α and tumor necrosis factor α in dCA1. In vitro, the M1-like BV2 microglia cell medium, containing high levels of Interleukin 1α and tumor necrosis factor α, elevated A1-like polarization of astrocytes, which weakened their capacity for glutamate clearance. Locally suppressing dCA1 M1-like microglia activation with minocycline administration attenuated A1-like polarization of astrocytes, ameliorated dCA1 neurotoxicity, and, most importantly, rescued spatial memory in methamphetamine abstinence mice. The effective time window of minocycline treatment on spatial memory is the methamphetamine exposure period, rather than the long-term methamphetamine abstinence.


Subject(s)
Astrocytes , Memory Disorders , Methamphetamine , Microglia , Minocycline , Spatial Memory , Animals , Methamphetamine/toxicity , Microglia/drug effects , Microglia/metabolism , Mice , Memory Disorders/chemically induced , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Spatial Memory/physiology , Spatial Memory/drug effects , Male , Minocycline/pharmacology , Mice, Inbred C57BL , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/pathology , Central Nervous System Stimulants/toxicity
5.
Theranostics ; 14(10): 4107-4126, 2024.
Article in English | MEDLINE | ID: mdl-38994023

ABSTRACT

Rationale: The heterogeneity of tumor cells within the glioblastoma (GBM) microenvironment presents a complex challenge in curbing GBM progression. Understanding the specific mechanisms of interaction between different GBM cell subclusters and non-tumor cells is crucial. Methods: In this study, we utilized a comprehensive approach integrating glioma single-cell and spatial transcriptomics. This allowed us to examine the molecular interactions and spatial localization within GBM, focusing on a specific tumor cell subcluster, GBM subcluster 6, and M2-type tumor-associated macrophages (M2 TAMs). Results: Our analysis revealed a significant correlation between a specific tumor cell subcluster, GBM cluster 6, and M2-type TAMs. Further in vitro and in vivo experiments demonstrated the specific regulatory role of the CEBPB transcriptional network in GBM subcluster 6, which governs its tumorigenicity, recruitment of M2 TAMs, and polarization. This regulation involves molecules such as MCP1 for macrophage recruitment and the SPP1-Integrin αvß1-Akt signaling pathway for M2 polarization. Conclusion: Our findings not only deepen our understanding of the formation of M2 TAMs, particularly highlighting the differential roles played by heterogeneous cells within GBM in this process, but also provided new insights for effectively controlling the malignant progression of GBM.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Glioblastoma , Tumor Microenvironment , Tumor-Associated Macrophages , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Humans , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Animals , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Mice , Cell Line, Tumor , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Signal Transduction , Macrophages/metabolism
6.
Biosensors (Basel) ; 14(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39056604

ABSTRACT

Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules.


Subject(s)
Ascorbic Acid , Biosensing Techniques , Dopamine , Electrochemical Techniques , Gold , Microelectrodes , Uric Acid , Dopamine/analysis , Gold/chemistry , Ascorbic Acid/analysis , Uric Acid/analysis , Silver/chemistry , Cadmium/analysis
7.
Front Pharmacol ; 15: 1402763, 2024.
Article in English | MEDLINE | ID: mdl-38994201

ABSTRACT

Naoxintong Capsule (NXT), a renowned traditional Chinese medicine (TCM) formulation, has been broadly applied in China for more than 30 years. Over decades, accumulating evidences have proven satisfactory efficacy and safety of NXT in treating cardiovascular and cerebrovascular diseases (CCVD). Studies have been conducted unceasingly, while this growing latest knowledge of NXT has not yet been interpreted properly and summarized comprehensively. Hence, we systematically review the advancements in NXT research, from its chemical constituents, quality control, pharmacokinetics, to its profound pharmacological activities as well as its clinical applications in CCVD. Moreover, we further propose specific challenges for its future perspectives: 1) to precisely clarify bioactivities of single compound in complicated mixtures; 2) to evaluate the pharmacokinetic behaviors of NXT feature components in clinical studies, especially drug-drug interactions in CCVD patients; 3) to explore and validate its multi-target mechanisms by integrating multi-omics technologies; 4) to re-evaluate the safety and efficacy of NXT by carrying out large-scale, multicenter randomized controlled trials. In brief, this review aims to straighten out a paradigm for TCM modernization, which help to contribute NXT as a piece of Chinese Wisdom into the advanced intervention strategy for CCVD therapy.

8.
J Biol Chem ; 300(8): 107558, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002669

ABSTRACT

α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.

9.
Clin Imaging ; 112: 110209, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833916

ABSTRACT

PURPOSE: This meta-analysis aimed to compare the diagnostic effectiveness of [18F]FDG PET/CT with that of [18F]FDG PET/MRI in terms of identifying liver metastasis in patients with primary cancer. METHODS: PubMed, Embase, Web of Science, and the Cochrane Library were searched, and studies evaluating the diagnostic efficacy of [18F]FDG PET/CT and [18F]FDG PET/MRI in patients with liver metastasis of primary cancer were included. We used a random effects model to analyze their sensitivity and specificity. Subgroup analyses and corresponding meta-regressions focusing on race, image analysis, study design, and analysis methodologies were conducted. Cochrane Q and I2 statistics were used to assess intra-group and inter-group heterogeneity. RESULTS: Seven articles with 343 patients were included in this meta-analysis. The sensitivity of [18F]FDG PET/CT was 0.82 (95 % CI: 0.63-0.96), and that of [18F]FDG PET/MRI was 0.91 (95 % CI: 0.82-0.98); there was no significant difference between the two methods (P = 0.32). Similarly, both methods showed equal specificity: 1.00 (95 % CI: 0.95-1.00) for [18F]FDG PET/CT and 1.00 (95 % CI: 0.96-1.00) for [18F]FDG PET/MRI, and thus, there was no significant difference between the methods (P = 0.41). Furthermore, the subgroup analyses revealed no differences. Meta-regression analysis revealed that race was a potential source of heterogeneity for [18F]FDG PET/CT (P = 0.01), while image analysis and contrast agent were found to be potential sources of heterogeneity for [18F]FDG PET/MRI (P = 0.02). CONCLUSIONS: [18F]FDG PET/MRI has similar sensitivity and specificity to [18F]FDG PET/CT for detecting liver metastasis of primary cancer in both the general population and in subgroups. [18F]FDG PET/CT may be a more cost-effective option. However, the conclusions of this meta-analysis are tentative due to the limited number of studies included, and further research is necessary for validation.


Subject(s)
Fluorodeoxyglucose F18 , Liver Neoplasms , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Sensitivity and Specificity , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Neoplasms/secondary , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods
10.
Front Oncol ; 14: 1395549, 2024.
Article in English | MEDLINE | ID: mdl-38898957

ABSTRACT

Objective: To investigate the application value of complete laparoscopy and Da Vinci robot esophagogastric anastomosis double muscle flap plasty in radical resection of proximal gastric cancer. Method: A retrospective descriptive study was used. The clinicopathological data of 35 patients undergoing radical operation for proximal gastric cancer admitted to Liaoning Cancer Hospital from January 2020 to December 2023 were collected. Variables evaluated: 1. Transoperative,2. Postoperative, 3. Follow-up. In relation to follow-up, esophageal disease status reflux, anastomosis, nutritional status score, serum hemoglobin, tumor recurrence, and metastasis were investigated. The trans and postoperative variables were obtained from the clinical records and the patients were followed up in outpatient department and by telephone. Result: Among the 35 patients, 17 underwent robotic surgery and 18 underwent laparoscopic surgery. There were 29 males and 6 females. 1) Transoperative: Robotic surgery: The operation time was (305.59 ± 22.07) min, the esophagogastric anastomosis double muscle flap plasty time was (149.76 ± 14.91) min, the average number of lymph nodes cleared was 30, and the average intraoperative blood loss was 30 ml. Laparoscopic surgery: The mean operation time was 305.17 ± 26.92min, the operation time of esophagogastric anastomosis double muscle flap was (194.06 ± 22.52) min, the average number of lymph nodes cleared was 24, and the average intraoperative blood loss was 52.5 ml. 2) Postoperative: Robotic surgery: the average time for patients to have their first postoperative anal emission was 3 days, the average time to first postoperative feeding was 4 days, and the average length of hospitalization after surgery was 8 days. Laparoscopic surgery: the average time for patients to have their first postoperative anal emission was 5 days, the average time to first postoperative feeding was 6 days, the average length of hospitalization after surgery was 10 days. 3) Follow-up: The follow-up time ranged from 1 to 42 months, with a median follow-up time of 24 months. Conclusion: Complete Da Vinci robot and laparoscopic esophagogastric anastomosis double muscle flap plasty for radical resection of proximal gastric cancer can minimize surgical incision, reduce abdominal exposure, accelerate postoperative recovery of patients, and effectively prevent reflux esophagitis and maintain good hemoglobin concentration and nutritional status. The advantages of robotic surgery is less intraoperative bleeding and faster post-surgical recovery, but it is relatively more expensive.

11.
Angew Chem Int Ed Engl ; : e202407752, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844430

ABSTRACT

Inherently chiral calix[4]arenes are an excellent structural scaffold for enantioselective synthesis, chiral recognition, sensing, and circularly polarized luminescence. However, their catalytic enantioselective synthesis remains challenging. Herein, we report an efficient synthesis of inherently chiral calix[4]arene derivatives via cascade enantioselective cyclization and oxidation reactions. The three-component reaction features a broad substrate scope (33 examples), high efficiency (up to 90 % yield), and excellent enantioselectivity (>95 % ee on average). The potential applications of calix[4]arene derivatives are highlighted by their synthetic transformation and a detailed investigation of their photophysical and chiroptical properties.

12.
Nat Ecol Evol ; 8(6): 1200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862563
13.
J Hazard Mater ; 475: 134835, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38878429

ABSTRACT

Developing efficient and eco-friendly technologies for treating the antibiotic wastewaters is crucial. At present, the catalysts with metal-nitrogen (M-Nx) coordination showed excellent Fenton-like performance but were always difficult to realize practical antibiotics degradation because of their complicated preparation methods and inferior stability. In this work, the Co-Nx configuration was facilely reconstructed on the surface of Co3O4 (Co-Nx/Co3O4), which exhibited superior catalytic activity and stability towards various antibiotics. DFT results indicated that stronger ETP oxidation will be triggered by the electron-donating pollutants since more electrons can be easily migrated from these pollutants to the Co-Nx/Co3O4/PMS complex. The Co-Nx/Co3O4/PMS system could maintain superior oxidation capacity, high catalytic stability and anti-interference due to (i) the strong nonradical ETP oxidation with superior degradation selectivity in Co-Nx/Co3O4/PMS system, and (ii) the synchronously enhanced radical oxidation with high populations of non-selective radicals generated via activating PMS by the Co-Nx/Co3O4. As a result, the synergies of synchronously enhanced dual oxidation pathways guaranteed the self-cleaning properties, maintaining 98 % of activity after eight cycles and stability across a wide pH range. Basically, these findings have significant implications for developing technologies for purifying antibiotic wastewater.


Subject(s)
Anti-Bacterial Agents , Cobalt , Oxidation-Reduction , Oxides , Water Pollutants, Chemical , Anti-Bacterial Agents/chemistry , Cobalt/chemistry , Water Pollutants, Chemical/chemistry , Oxides/chemistry , Catalysis , Nitrogen/chemistry , Wastewater/chemistry , Waste Disposal, Fluid/methods
15.
Acta Pharmacol Sin ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862817

ABSTRACT

Suppression of neuroinflammation using small molecule compounds targeting the key pathways in microglial inflammation has attracted great interest. Recently, increasing attention has been gained to the role of the second bromodomain (BD2) of the bromodomain and extra-terminal (BET) proteins, while its effect and molecular mechanism on microglial inflammation has not yet been explored. In this study, we evaluated the therapeutic effects of ABBV-744, a BD2 high selective BET inhibitor, on lipopolysaccharide (LPS)-induced microglial inflammation in vitro and in vivo, and explored the key pathways by which ABBV-744 regulated microglia-mediated neuroinflammation. We found that pretreatment of ABBV-744 concentration-dependently inhibited the expression of LPS-induced inflammatory mediators/enzymes including NO, TNF-α, IL-1ß, IL-6, iNOS, and COX-2 in BV-2 microglial cells. These effects were validated in LPS-treated primary microglial cells. Furthermore, we observed that administration of ABBV-744 significantly alleviated LPS-induced activation of microglia and transcriptional levels of pro-inflammatory factors TNF-α and IL-1ß in mouse hippocampus and cortex. RNA-Sequencing (RNA-seq) analysis revealed that ABBV-744 induced 508 differentially expressed genes (DEGs) in LPS-stimulated BV-2 cells, and gene enrichment and gene expression network analysis verified its regulation on activated microglial genes and inflammatory pathways. We demonstrated that pretreatment of ABBV-744 significantly reduced the expression levels of basic leucine zipper ATF-like transcription factor 2 (BATF2) and interferon regulatory factor 4 (IRF4), and suppressed JAK-STAT signaling pathway in LPS-stimulated BV-2 cells and mice, suggesting that the anti-neuroinflammatory effect of ABBV-744 might be associated with regulation of BATF2-IRF4-STAT1/3/5 pathway, which was confirmed by gene knockdown experiments. This study demonstrates the effect of a BD2 high selective BET inhibitor, ABBV-744, against microglial inflammation, and reveals a BATF2-IRF4-STAT1/3/5 pathway in regulation of microglial inflammation, which might provide new clues for discovery of effective therapeutic strategy against neuroinflammation.

16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 768-773, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926965

ABSTRACT

OBJECTIVE: To analyze the prognostic value of del(1p32) in patients with newly diagnosed multiple myeloma (MM). METHODS: The clinical data of 341 newly diagnosed MM attended in Jiangsu Province Hospital were retrospective analyzed. Clinical characteristic combined with genetic features, especially del(1p32), were analyzed for survival and prognostic of patients. RESULTS: Among the 341 patients with newly diagnosed MM, 24(7.0%) patients were del(1p32) positive. The progression-free survival (PFS) and overall survival (OS) were significantly shorter in MM patients with del(1p32) than those without del(1p32) (PFS: P < 0.001;OS: P < 0.001). The COX proportional-hazards model showed that del (1p32) was an independent risk factor for PFS and OS of patients with MM. The patients with both 1q21 gain/amplification and del(1p32), as "double-hit chromosome 1", have worse prognosis than those with only 1q21 gain/amplification or only del(1p32) (PFS: P < 0.001; OS: P < 0.001). CONCLUSION: Del(1p32) is an independent risk factor for PFS and OS of patients with MM. Del(1p32) detection should be widely used in the prognostic analysis for newly diagnosed MM patients.


Subject(s)
Chromosomes, Human, Pair 1 , Multiple Myeloma , Humans , Multiple Myeloma/diagnosis , Prognosis , Retrospective Studies , Chromosomes, Human, Pair 1/genetics , Risk Factors , Chromosome Deletion , Proportional Hazards Models , Male , Female , Middle Aged
17.
Theranostics ; 14(7): 2881-2896, 2024.
Article in English | MEDLINE | ID: mdl-38773977

ABSTRACT

Methamphetamine (METH) withdrawal anxiety symptom and relapse have been significant challenges for clinical practice, however, the underlying neuronal basis remains unclear. Our recent research has identified a specific subpopulation of choline acetyltransferase (ChAT+) neurons localized in the external lateral portion of parabrachial nucleus (eLPBChAT), which modulates METH primed-reinstatement of conditioned place preference (CPP). Here, the anatomical structures and functional roles of eLPBChAT projections in METH withdrawal anxiety and primed reinstatement were further explored. Methods: In the present study, a multifaceted approach was employed to dissect the LPBChAT+ projections in male mice, including anterograde and retrograde tracing, acetylcholine (Ach) indicator combined with fiber photometry recording, photogenetic and chemogenetic regulation, as well as electrophysiological recording. METH withdrawal anxiety-like behaviors and METH-primed reinstatement of conditioned place preference (CPP) were assessed in male mice. Results: We identified that eLPBChAT send projections to PKCδ-positive (PKCδ+) neurons in lateral portion of central nucleus of amygdala (lCeAPKCδ) and oval portion of bed nucleus of the stria terminalis (ovBNSTPKCδ), forming eLPBChAT-lCeAPKCδ and eLPBChAT-ovBNSTPKCδ pathways. At least in part, the eLPBChAT neurons positively innervate lCeAPKCδ neurons and ovBNSTPKCδ neurons through regulating synaptic elements of presynaptic Ach release and postsynaptic nicotinic acetylcholine receptors (nAChRs). METH withdrawal anxiety and METH-primed reinstatement of CPP respectively recruit eLPBChAT-lCeAPKCδ pathway and eLPBChAT-ovBNSTPKCδ pathway in male mice. Conclusion: Our findings put new insights into the complex neural networks, especially focusing on the eLPBChAT projections. The eLPBChAT is a critical node in the neural networks governing METH withdrawal anxiety and primed-reinstatement of CPP through its projections to the lCeAPKCδ and ovBNSTPKCδ, respectively.


Subject(s)
Anxiety , Methamphetamine , Mice, Inbred C57BL , Substance Withdrawal Syndrome , Animals , Methamphetamine/adverse effects , Male , Mice , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/physiopathology , Anxiety/metabolism , Neurons/metabolism , Choline O-Acetyltransferase/metabolism , Septal Nuclei/metabolism , Behavior, Animal/drug effects
18.
Natl Sci Rev ; 11(6): nwad258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707200

ABSTRACT

Our understanding of pre-Cretaceous dinosaur reproduction is hindered by a scarcity of evidence within fossil records. Here we report three adult skeletons and five clutches of embryo-containing eggs of a new sauropodomorph from the Lower Jurassic of southwestern China, displaying several significant reproductive features that are either unknown or unlike other early-diverging sauropodomorphs, such as relatively large eggs with a relatively thick calcareous shell formed by prominent mammillary cones, synchronous hatching and a transitional prehatching posture between the crocodilians and living birds. Most significantly, these Early Jurassic fossils provide strong evidence for the earliest known leathery eggs. Our comprehensive quantitative analyses demonstrate that the first dinosaur eggs were probably leathery, elliptical and relatively small, but with relatively long eggshell units, and that along the line to living birds, the most significant change in reptilian egg morphology occurred early in theropod evolution rather than near the origin of Aves.

19.
Sensors (Basel) ; 24(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794061

ABSTRACT

Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. Based on the ORB-SLAM3-VI framework, we propose ORB-SLAM3-VIP, which integrates a depth sensor, an IMU sensor and an optical sensor. This method integrates the measurements of depth sensors and an IMU sensor into the visual SLAM algorithm through tight coupling, and establishes a multi-sensor fusion SLAM model. Depth constraints are introduced into the process of initialization, scale fine-tuning, tracking and mapping to constrain the position of the sensor in the z-axis and improve the accuracy of pose estimation and map scale estimate. The test on seven sets of underwater multi-sensor sequence data in the AQUALOC dataset shows that, compared with ORB-SLAM3-VI, the ORB-SLAM3-VIP system proposed in this paper reduces the scale error in all sequences by up to 41.2%, and reduces the trajectory error by up to 41.2%. The square root has also been reduced by up to 41.6%.

20.
Mol Neurobiol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780721

ABSTRACT

Ischemic stroke ranks among the leading causes of death and disability in humans and is accompanied by motor and cognitive impairment. However, the precise mechanisms underlying injury after stroke and effective treatment strategies require further investigation. Peroxiredoxin-1 (PRDX1) triggers an extensive inflammatory cascade that plays a pivotal role in the pathology of ischemic stroke, resulting in severe brain damage from activated microglia. In the present study, we used molecular dynamics simulation and nuclear magnetic resonance to detect the interaction between PRDX1 and a specific interfering peptide. We used behavioral, morphological, and molecular experimental methods to demonstrate the effect of PRDX1-peptide on cerebral ischemia-reperfusion (I/R) in mice and to investigate the related mechanism. We found that PRDX1-peptide bound specifically to PRDX1 and improved motor and cognitive functions in I/R mice. In addition, pretreatment with PRDX1-peptide reduced the infarct area and decreased the number of apoptotic cells in the penumbra. Furthermore, PRDX1-peptide inhibited microglial activation and downregulated proinflammatory cytokines including IL-1ß, IL-6, and TNF-α through inhibition of the TLR4/NF-κB signaling pathway, thereby attenuating ischemic brain injury. Our findings clarify the precise mechanism underlying PRDX1-induced inflammation after ischemic stroke and suggest that the PRDX1-peptide can significantly alleviate the postischemic inflammatory response by interfering with PRDX1 amino acids 70-90 and thereby inhibiting the TLR4/NF-κB signaling pathway. Our study provides a theoretical basis for a new therapeutic strategy to treat ischemic stroke.

SELECTION OF CITATIONS
SEARCH DETAIL