Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Angew Chem Int Ed Engl ; : e202412854, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085049

ABSTRACT

This study successfully designed and synthesized two nonfused ring electron acceptors, 412-6F and 412-6Cl, modified with fluorine and chlorine substituents, respectively. Single-crystal analysis revealed that 412-6F possesses a planar molecular backbone and exhibits pronounced dipole-dipole interactions between the fluorine atoms on the lateral phenyl groups and the carbonyl oxygen atoms on the end groups. This specific interaction promotes dense end-group stacking, leading to a reduced interlayer spacing. Improved crystallinity and coherence length are observed in the D18:412-6F blend film. Conversely, 412-6Cl adopts a more distorted configuration and lacks these interactions. As a result, the organic solar cell (OSC) based on D18:412-6F achieved a remarkable power conversion efficiency of 18.03%, surpassing the performance of the D18:412-6Cl OSC. This underscores the importance of designing novel acceptors with beneficial intermolecular interactions to enhance OSC efficiency, thus providing a new direction for organic photovoltaic advancement.

2.
Nat Prod Res ; : 1-8, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884117

ABSTRACT

Sarcanoids A and B (1 and 2), two new lindenane-type sesquiterpenoid dimers with a γ-hydroxysenecioate moiety at C-15', were isolated from the ethyl acetate extract of Sarcandra glabra. The structures were elucidated by extensive analysis of spectroscopic data, and their absolute configurations were determined by single-crystal X-ray crystallography. Compounds 1 and 2 showed moderate inhibitory activities on the nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW264.7 macrophages.

3.
Angew Chem Int Ed Engl ; : e202405949, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871648

ABSTRACT

Layer-by-layer (LbL) deposition of active layers in organic solar cells (OSCs) offers immense potential for optimizing performance through precise tailoring of each layer. However, achieving high-performance LbL OSCs with distinct solid additives in each layer remains challenging. In this study, we explore a novel approach that strategically incorporates different solid additives into specific layers of LbL devices. To this end, we introduce FeCl3 into the lower donor (D18) layer as a p-type dopant to enhance hole concentration and mobility. Concurrently, we incorporate the wide-band gap conjugated polymer poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) into the upper acceptor (L8-BO) layer to improve the morphology and prolong exciton lifetime. Unlike previous studies, our approach combines these two strategies to achieve higher and more balanced electron and hole mobility without affecting device open-circuit voltage, while also suppressing charge recombination. Consequently, the power conversion efficiency (PCE) of the D18+FeCl3/L8-BO device increases to 18.12 %, while the D18/L8-BO+PFO device attains a PCE of 18.79 %. These values represent substantial improvements over the control device's PCE of 17.59 %. Notably, when both FeCl3 and PFO are incorporated, the D18+FeCl3/L8-BO+PFO device achieves a remarkable PCE of 19.17 %. In summary, our research results demonstrate the effectiveness of the layered solid additive strategy in improving OSC performance.

4.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731534

ABSTRACT

Two unreported heteropolysaccharides, denoted as YCJP-1 and YCJP-2, were isolated from the herbs of Chloranthus japonicus. YCJP-1 was a heteropolysaccharide composed of glucose, galactose, arabinose, mannose, rhamnose, and a minor proportion of uronic acids, with the molecular weight mainly distributed in the 74,475-228,443 Da range. YCJP-2 was mainly composed of glucose, mannose, and galactose, with the molecular weights ranging from 848 to 5810 Da. To further evaluate the anti-gastric cancer effects of C. japonicus, the inhibitory effects of the crude polysaccharide (YCJP) and the purified polysaccharides (YCJP-1 and YCJP-2) were determined using a CCK-8 assay and colon-forming assay on MGC-803 and AGS gastric cancer cell lines. Our results showed that YCJP, YCJP-1, and YCJP-2 possess prominent inhibitory effects on the proliferation of MGC-803 and AGS cells, and the AGS cell was more sensitive to YCJP, YCJP-1, and YCJP-2. Moreover, YCJP-2 demonstrated superior anti-gastric cancer effects compared to YCJP-1. This could potentially be attributed to YCJP-2's higher glucose content and narrower molecular weight distribution.


Subject(s)
Cell Proliferation , Polysaccharides , Stomach Neoplasms , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Weight , Caryophyllaceae/chemistry
5.
Small ; : e2310028, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651514

ABSTRACT

In this study, two novel donor-acceptor (D-A) copolymers are designed and synthesized, DTBT-2T and DTBT-2T2F with 2,2'-bithiophene or 3,3'-difluoro-2,2'-bithiophene as the donor unit and dithienobenzothiadiazole as the acceptor unit, and used them as donor materials in non-fullerene organic solar cells (OSCs). Due to enhanced planarity of polymer chains resulted by the intramolecular F···S noncovalent interactions, the incorporation of 3,3'-difluoro-2,2'-bithiophene unit instead of 2,2'-bithiophene into the polymers can enhance their molecular packing, crystallinity and hole mobility. The DTBT-2T:L8-BO based binary OSCs deliver a power conversion efficiency (PCE) of only 9.71% with a Voc of 0.78 V, a Jsc of 20.69 mA cm-2 , and an FF of 59.67%. Moreover, the introduction of fluoro atoms can lower the highest occupied molecular orbital levels. As a result, DTBT-2T2F:L8-BO based single-junction binary OSCs exhibited less recombination loss, more balanced charge mobility, and more favorable morphology, resulting in an impressive PCE of 17.03% with a higher Voc of 0.89 V, a Jsc of 25.40 mA cm-2, and an FF of 75.74%. These results indicate that 3,3'-difluoro-2,2'-bithiophene unit can be used as an effective building block to synthesize high performance polymer donor materials. This work greatly expands the selection range of donor units for constructing high-performance polymers.

6.
Respir Med ; 225: 107580, 2024.
Article in English | MEDLINE | ID: mdl-38484897

ABSTRACT

According to the concept of "united airway diseases", the airway is a single organ in which upper and lower airway diseases are commonly comorbid. A range of inflammatory factors have been found to play an important role in the chain reaction of upper and lower airway diseases. However, the amount of research on this concept remains limited. The underlying mechanism of the relationship between typical diseases of the united airway, such as asthma, allergic rhinitis, and chronic sinusitis, also needs to be further explored. This review highlights the interaction between upper and lower respiratory diseases gathered from epidemiological, histoembryology, neural mechanistic, microbiological, and clinical studies, revealing the relationship between the upper and lower respiratory tracts.


Subject(s)
Asthma , Respiration Disorders , Rhinitis, Allergic , Rhinitis , Humans , Rhinitis, Allergic/epidemiology , Asthma/epidemiology , Asthma/etiology , Asthma/pathology , Comorbidity , Bronchi/pathology , Rhinitis/epidemiology , Rhinitis/pathology
7.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38543099

ABSTRACT

To establish the fingerprint of Cibotii rhizoma using high-performance liquid chromatography (HPLC) and evaluate the quality of Cibotii rhizoma from different regions using chemometrics to identify the potential quality markers, thirteen batches of Cibotii rhizoma samples were analyzed. the similarity evaluation system of TCM chromatographic fingerprint similarity evaluation was used to confirm common peaks. The SPSS 27 software was used for hierarchical cluster analysis (HCA), and SIMCA 14.1 software was used for principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Moreover, a batch of Cibotii rhizoma was selected for LC-MS analysis and speculated on 15 common components. HPLC fingerprint were established, 15 common peaks were matched, two chromatographic peaks were identified using standard substances (protocatechuic acid and protocatechuic aldehyde), and 13 common components were inferred through liquid chromatograph-mass spectrometer (LC-MS). The 13 batches of the samples showed good similarities (>0.910). The results of HCA, PCA and OPLS-DA showed that 13 batches of samples were divided into three groups, and different markers were selected. The method is simple, rapid and reproducible, and can provide a reference for the overall quality evaluation of Cibotii rhizoma.

8.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543188

ABSTRACT

Pyroptosis, an innate immune response, plays a crucial role in the pathological process of inflammatory diseases. Although pyroptosis blockade is considered a potential therapeutic strategy, no ideal candidate drug has been identified. The natural product Chojaponilactone B (CJB) has demonstrated anti-inflammatory effects, but its role in macrophage pyroptosis has not been studied. This study aimed to investigate the effect and mechanism of CJB in inhibiting macrophage pyroptosis. Using an LPS/ATP-induced THP-1 macrophage pyroptosis model, we found that CJB significantly inhibited pyroptosis and reduced the levels of NLRP3, caspase 1, N-GSDMD, and inflammatory cytokines IL-1ß and IL-18. RNA sequencing analysis revealed that CJB interfered with LPS/ATP-induced THP-1 macrophage gene expression, suggesting involvement in anti-inflammatory and anti-pyroptotic signaling pathways. Additionally, CJB suppressed LPS/ATP-induced elevations in TLRs, MyD88, pro-IL-1ß, and NF-κB and blocked NF-κB p65 nuclear translocation. In summary, CJB inhibits NLRP3 activation and macrophage pyroptosis through the TLR/MyD88/NF-κB pathway, providing important evidence for its development as a potential drug for treating pyroptosis-related inflammatory diseases.

9.
Adv Mater ; 36(7): e2307292, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37811717

ABSTRACT

In this study, three nonfused-ring electron acceptors (2TT, 2TT-C6-F, and 2TT-C11-F) with the same steric hindrance groups (2,4,6-tripropylbenzene) are designed and synthesized and the impact of electron-withdrawing and lateral alkyl side chains on the performance of binary and ternary organic solar cells (OSCs) is explored. For the binary OSCs, 2TT-C11-F with IC-2F terminal groups and lateral undecyl side chains display a red shifted absorption spectrum and suitable energy levels, and the corresponding blend film exhibits appropriate phase separation and crystallinity. Thus, binary OSCs based on 2TT-C11-F achieve an impressive power conversion efficiency of 13.03%, much higher than the efficiencies of those based on 2TT (9.68%) and 2TT-C6-F (12.11%). In the ternary OSCs, 2TT with CC terminal groups and lateral hexyl side chains exhibit complementary absorption and cascade energy levels with a host binary system (D18:BTP-eC9-4F). Hence, the ternary OSCs based on 2TT achieve a remarkable efficiency of 19.39%, ranking among the highest reported values. The research yields comprehensive 2TT-series nonfused-ring electron acceptors, demonstrating their great potential for the fabrication of high-performance binary and ternary OSCs.

10.
Angew Chem Int Ed Engl ; 62(50): e202314420, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37881111

ABSTRACT

In this work, inspired by the principles of a pressure cooker, we utilized a high-pressure method to address the processing challenges associated with high molecular weight polymers. Through this approach, we successfully dissolved high molecular weight D18 in chloroform at 100 °C within a pressure-tight vial. The increased steam pressure raised the boiling point and dissolving capacity of chloroform, enabling the creation of a hybrid film with superior properties, including more ordered molecular arrangement, increased crystallinity, extended exciton diffusion length, and improved phase morphology. Organic solar cells (OSCs) based on D18 : L8-BO prepared using this high-pressure method achieved an outstanding power conversion efficiency of 19.65 %, setting a new record for binary devices to date. Furthermore, this high-pressure method was successfully applied to fabricate OSCs based on other common systems, leading to significant enhancements in device performance. In summary, this research introduces a universal method for processing high molecular weight D18 materials, ultimately resulting in the highest performance reported for binary organic solar cells.

11.
ACS Appl Mater Interfaces ; 15(39): 46138-46147, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37737104

ABSTRACT

Molecular dopants can effectively improve the performance of organic solar cells (OSCs). Here, PM6/BTP-eC9-4Cl-based OSCs are fabricated by a layer-by-layer (LbL) deposition method, and the electron acceptor BTP-eC9-4Cl layer is properly doped by n-type dopant benzyl viologen (BV) or [4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl]dimethyl-amine (N-DMBI-H). The power conversion efficiency (PCE) of OSCs increases from 16.80 to 17.61 or 17.84% when the acceptor layer is doped by BV (0.01 wt %) or N-DMBI-H (0.01 wt %), respectively. At the optimal doping concentration, the device exhibits more balanced charge transport, fewer bimolecular recombinations, faster charge separation and transfer, and better stability. This doping strategy has good universality; when the acceptor layer L8-BO of LbL OSCs is doped by 0.01 wt % BV or 0.01 wt % N-DMBI-H, the PCE increases from 17.49 to 18.35 or 18.25%, respectively. All in all, our studies have demonstrated that the doping strategy is effective in enhancing the performance of OSCs.

12.
Int Arch Allergy Immunol ; 184(11): 1099-1105, 2023.
Article in English | MEDLINE | ID: mdl-37598674

ABSTRACT

INTRODUCTION: Small airway dysfunction (SAD) is associated with type 2 inflammation in patients who have non-asthmatic chronic rhinosinusitis with nasal polyps (CRSwNPs); however, the risk factors for abnormal small airway function indicators in CRSwNP patients with and without asthma remain unclear. METHODS: We retrospectively analyzed 41 asthmatic and 109 non-asthmatic CRSwNP patients. Clinical characteristics were compared between groups, correlations between small airway function and clinical parameters were calculated, and independent risk factors for every small airway indicator were identified in each group. RESULTS: Asthmatic CRSwNP patients had significantly reduced small airway function, and the proportion of patients with SAD was higher in asthmatic CRSwNP patients (65.85%) than in patients without asthma (9.17%). With regard to specific airway function indicators, age and a patient's blood eosinophil (%) were identified as independent risk factors for lower FEF50% %pred and FEF25-75% pred, with age being an independent risk factor for FEF75% %pred in asthmatic CRSwNP patients. In non-asthmatic CRSwNP patients, allergic rhinitis comorbidity was found to be an independent risk factor for FEF50% %pred, FEF75% %pred, and FEF25-75% %pred. CONCLUSION: Physicians should pay greater attention to risk factors for abnormal small airway function indicators in patients with CRSwNPs to prevent the occurrence of SAD.


Subject(s)
Asthma , Nasal Polyps , Rhinitis , Sinusitis , Humans , Nasal Polyps/complications , Nasal Polyps/epidemiology , Retrospective Studies , Rhinitis/complications , Rhinitis/epidemiology , Asthma/complications , Asthma/epidemiology , Sinusitis/complications , Sinusitis/epidemiology , Risk Factors , Chronic Disease
13.
Adv Mater ; 35(28): e2211372, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37130579

ABSTRACT

The layer-by-layer (LbL) solution-processed organic solar cells (OSCs) are conductive to achieve vertical phase separation, tunable donor-acceptor (D/A) interfaces, and favorable charge-transport pathways. In this work, a wide-bandgap component poly(9-vinylcarbazole) (PVK) is added to the upper electron acceptor layer to improve the performance of LbL-processed OSCs. Results show that the PVK component can adjust the film morphology, dope the electron acceptor, increase the electron concentration, and improve charge transport. Such n-type doping is verified by Seebeck coefficient measurement, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance characterization. In addition, the fluorescence intensity and exciton lifetime of the PVK-doped acceptor film are increased, thus being beneficial for exciton diffusion to the D/A interface. Therefore, the power conversion efficiency (PCE) of LbL OSCs increases when 2.50 wt.% PVK is employed in the electron acceptor layer of commonly-used high-efficiency system and a maximum value of 19.05% can be achieved. The role of PVK played in the active layer is different from those of additives and ternary components reported previously, so the results provide an alternative way to enhance the device performance of LbL-processed OSCs.


Subject(s)
Electrons , Diffusion , Electric Conductivity
14.
Biotechnol Genet Eng Rev ; : 1-7, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37070129

ABSTRACT

This study was designed to investigate the application value of shape memory alloy embracing fixator in the treatment of proximal clavicle fracture. From April 2018 to October 2020, the fracture data of patients with proximal clavicle fractures treated with shape memory alloy embracing fixator were retrospectively analyzed, including 12 males and 8 females. The age of patients ranged from 34 to 66 years (mean, 43.4 years). According to Craig's classification, the patients were divided into the following groups: type CII (eight cases), type CIII (five cases), type CⅤ (seven cases), all of which were closed fractures without nerve or vascular injury. The fracture healing time and postoperative complications were observed, and the shoulder joint function was evaluated by Constant score. All patients were followed up for 13-19 months (average 15.6 months). The clavicle radiographs showed that all the 20 patients had bone union, and the fracture union time was 6-10 months (average 7.2 months). There were no complications such as internal fixation fracture and displacement. According to the Constant criterion, 13 cases were excellent and 5 cases were fair and 1 case was good. The treatment of proximal clavicle fracture with shape memory alloy embracing fixator is an effective treatment method with simple operation with satisfactory fixation effect and low complication rate, which is worthy of being widely used in clinical practice.

15.
Foods ; 12(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37107385

ABSTRACT

In this study, the hot water extraction process of crude polysaccharides from Morindae officinalis radix (cMORP) was conducted and optimized through a single-factor test and orthogonal experimental design. With the optimal extraction process (extraction temperature of 80 °C, extraction time of 2 h, liquid/solid ratio of 15 mL/g, and number of extraction of 1), the cMORP was obtained by the ethanol precipitation method. The chemical properties and preliminary characterization of the cMORP were analyzed by chemical or instrumental methods. Furthermore, to indicate a preliminary study on safety, a single oral dose of 5000 mg/kg body weight (BW) was administered orally to Kunming (KM) mice for acute toxicity, and the cMORP was administered orally to KM mice once a day at doses of 25, 50, and 100 mg/kg BW for 30 days. General behaviors, body weight variations, histopathology, relative organ weights, and hematological and serum biochemical parameters were observed and recorded. The results suggested there were no toxicologically significant changes. Based on the safety study, cMORP can be initially considered non-toxic with no acute oral toxicity up to 5000 mg/kg BW and safe at up to 100 mg/kg BW in KM mice for 30 days.

16.
Molecules ; 28(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36985397

ABSTRACT

Recently, selenium nanoparticles have been drawing attention worldwide, and it is crucial to increase the stability of nano-Se. Morinda officinalis polysaccharides (MOP) are the main active component in Morinda officinalis radix. However, their low activity has limited their application. A novel selenium nanoparticle (Se-MOP) was prepared to solve these problems using MOP as a dispersant. The zeta potential was measured to evaluate the stability, and UV and ATR-FTIR were used to investigate the binding type of selenium and MOP. The morphology was observed by the TEM method. Furthermore, the inhibitory effect on five selected cancer cells (HepG2, MCF-7, AGS, PC9, and HCT8) was evaluated, showing remarkable inhibition of all five cancer cells. The mechanism of inhibition was also investigated by cell circle assay, and it was found that Se-MOP could induce cell circle G0/G1 phase arrest. Immune-enhancing activities were evaluated by measuring the proliferation and cytokines of mouse spleen lymphocytes in vitro and quantitative RT-PCR. The results indicated that single stimulation of Se-MOP and synergistic stimulation with PHA or LPS increased immune capacity and improved immune by increasing the expression of cytokines.


Subject(s)
Morinda , Nanoparticles , Selenium , Mice , Animals , Selenium/pharmacology , Selenium/chemistry , Morinda/chemistry , Polysaccharides/pharmacology , Cytokines , Nanoparticles/chemistry
17.
ACS Appl Mater Interfaces ; 15(3): 4275-4283, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36645327

ABSTRACT

Solving the contradiction between good solubility and dense packing is a challenge in designing high-performance nonfullerene acceptors. Herein, two simple nonfused ring electron acceptors (o-AT-2Cl and m-AT-2Cl) carrying ortho- or meta-substituted hexyloxy side chains can be facilely synthesized in only three steps. The two ortho-substituted phenyl side chains in o-AT-2Cl cannot freely rotate due to a big steric hindrance, which endows the acceptor with good solubility. Moreover, o-AT-2Cl displays a more ordered packing than m-AT-2Cl as revealed by the absorption measurement. When blended with polymer donor D18 for the fabrication of organic solar cells (OSCs), o-AT-2Cl-based devices exhibit a favorable morphology, more efficient exciton dissociation, and better charge transport. Consequently, the optimal OSCs based on D18:o-AT-2Cl exhibit a power conversion efficiency (PCE) of 12.8%, which is significantly higher than the moderate PCE (7.66%) for D18:m-AT-2Cl-based devices. Remarkably, o-AT-2Cl shows a higher figure-of-merit value compared with classic high-efficiency fused ring electron acceptors. As a result, our research succeeds in obtaining nonfused ring acceptors with cost-effective photovoltaic performance and provides a valuable experience for simultaneously improving solubility as well as ensuring ordered packing of acceptors through regulating the steric hindrance via changing the position of substituents.

18.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36678602

ABSTRACT

Leaves of Strobilanthes cusia Kuntze (S. cusia) are a widely used alexipharmic Traditional Chinese Medicine (TCM) in southern China for the prevention of cold and respiratory tract infectious diseases. One of the most common bacterial pathogens in the respiratory tract is the gram-positive bacterium Streptococcus pneumoniae. The antibiotic resistance of colonized S. pneumoniae makes it a more serious threat to public health. In this study, the leaves of S. cusia were found to perform antibacterial effects on the penicillin-resistant S. pneumoniae (PRSP). Confocal assay and Transmission Electron Microscopy (TEM) monitored the diminished cell wall integrity and capsule thickness of the PRSP with treatment. The following comparative proteomics analysis revealed that the glycometabolism-related pathways were enriched for the differentially expressed proteins between the samples with treatment and the control. To further delve into the specific single effective compound, the bio-active contents of leaves of S. cusia were analyzed by UPLC-UV-ESI-Q-TOF/MS, and 23 compounds were isolated for anti-PRSP screening. Among them, Tryptanthrin demonstrated the most promising effect, and it possibly inhibited the N-glycan degradation proteins, as suggested by reverse docking analysis in silico and further experimental verification by the surface plasmon resonance assay (SPR). Our study provided a research foundation for applications of the leaves of S. cusia as a TCM, and supplied a bio-active compound Tryptanthrin as a candidate drug skeleton for infectious diseases caused by the PRSP.

19.
Small ; 18(35): e2203454, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35934890

ABSTRACT

Motivated by simplifying the synthesis of nonfullerene acceptor and establishing the relation between molecular structure and photovoltaic performance, two isomeric nonfused ring electron acceptors (o-TT-Cl and m-TT-Cl), whose properties can be adjusted by changing the side chains, are designed and synthesized with several high-yield steps. o-TT-Cl with V-shaped side chain induces a dominated J-aggregation and displays much better solubility and more ordered packing than m-TT-Cl with linear side chain. Thus, the o-TT-Cl-based blend film generates better phase morphology and charge transport than m-TT-Cl-based one. Finally, the power conversion efficiency of o-TT-Cl-based devices is 12.84%, which is much higher than that of m-TT-Cl-based ones (6.54%). This work highlights the importance of side chains engineering on improving photovoltaic performance of nonfused ring electron acceptors.

20.
Front Microbiol ; 13: 864246, 2022.
Article in English | MEDLINE | ID: mdl-35875567

ABSTRACT

Methicillin-resistant Staphylococcus epidermidis (MRSE) is one of the most commonly found pathogens that may cause uncontrollable infections in immunocompromised and hospitalized patients. Compounds isolated from cinnamon such as cinnamaldehyde and cinnamic acid showed promising anti-oxidant, anti-tumor, and immunoregulatory effects; more importantly, these compounds also possess promising broad-spectrum antibacterial activity. In this study, the potential antibacterial activity of 2-methoxycinnamaldehyde (MCA), another compound in cinnamon, against MRSE was investigated. Combining the broth microdilution test, live/dead assay, and biofilm formation assay, we found MCA was able to inhibit the proliferation, as well as the biofilm formation of MRSE, indicating MCA could not only affect the growth of MRSE but also inhibit the pathogenic potential of this bacterium. Additionally, the results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that MCA caused morphological changes and the leakage of DNA, RNA, and cellular contents of MRSE. Due to the close relationship between cell wall synthesis, ROS formation, and cell metabolism, the ROS level and metabolic profile of MRSE were explored. Our study showed MCA significantly increased the ROS production in MRSE, and the following metabolomics analysis showed that the increased ROS production may partially be due to the increased metabolic flux through the TCA cycle. In addition, we noticed the metabolic flux through the pentose phosphate pathway (PPP) was upregulated accompanied by elevated ROS production. Therefore, the alterations in cell metabolism and increased ROS production could lead to the damage of the cell wall, which in turn decreased the proliferation of MRSE. In conclusion, MCA seemed to be a promising alternative antimicrobial agent to control MRSE infections.

SELECTION OF CITATIONS
SEARCH DETAIL