Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Metabolism ; 155: 155909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582490

ABSTRACT

BACKGROUND: Krüppel-like factor 10 (KLF10), a zinc finger transcription factor, plays a pivotal role in modulating TGF-ß-mediated cellular processes such as growth, apoptosis, and differentiation. Recent studies have implicated KLF10 in regulating lipid metabolism and glucose homeostasis. This study aimed to elucidate the precise role of hepatic KLF10 in developing metabolic dysfunction-associated steatohepatitis (MASH) in diet-induced obese mice. METHODS: We investigated hepatic KLF10 expression under metabolic stress and the effects of overexpression or ablation of hepatic KLF10 on MASH development and lipidemia. We also determined whether hepatocyte nuclear factor 4α (HNF4α) mediated the metabolic effects of KLF10. RESULTS: Hepatic KLF10 was downregulated in MASH patients and genetically or diet-induced obese mice. AAV8-mediated overexpression of KLF10 in hepatocytes prevented Western diet-induced hypercholesterolemia and steatohepatitis, whereas inactivation of hepatocyte KLF10 aggravated Western diet-induced steatohepatitis. Mechanistically, KLF10 reduced hepatic triglyceride and free fatty acid levels by inducing lipolysis and fatty acid oxidation and inhibiting lipogenesis, and reducing hepatic cholesterol levels by promoting bile acid synthesis. KLF10 highly induced HNF4α expression by directly binding to its promoter. The beneficial effect of KLF10 on MASH development was abolished in mice lacking hepatocyte HNF4α. In addition, the inactivation of KLF10 in hepatic stellate cells exacerbated Western diet-induced liver fibrosis by activating the TGF-ß/SMAD2/3 pathway. CONCLUSIONS: Our data collectively suggest that the transcription factor KLF10 plays a hepatoprotective role in MASH development by inducing HNF4α. Targeting hepatic KLF10 may offer a promising strategy for treating MASH.


Subject(s)
Early Growth Response Transcription Factors , Fatty Liver , Hepatocyte Nuclear Factor 4 , Kruppel-Like Transcription Factors , Animals , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Humans , Male , Early Growth Response Transcription Factors/metabolism , Early Growth Response Transcription Factors/genetics , Fatty Liver/metabolism , Fatty Liver/etiology , Mice, Inbred C57BL , Lipid Metabolism , Liver/metabolism , Hepatocytes/metabolism , Mice, Knockout
2.
J Lipid Res ; 65(4): 100527, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447926

ABSTRACT

Forkhead transcription factor 3 (FOXA3) has been shown to regulate metabolism and development. Hepatic FOXA3 is reduced in obesity and fatty liver disease. However, the role of hepatic FOXA3 in regulating obesity or steatohepatitis remains to be investigated. In this work, C57BL/6 mice were i.v. injected with AAV8-ALB-FOXA3 or the control virus. The mice were then fed a chow or Western diet for 16 weeks. The role of hepatic FOXA3 in energy metabolism and steatohepatitis was investigated. Plasma bile acid composition and the role of Takeda G protein-coupled receptor 5 (TGR5) in mediating the metabolic effects of FOXA3 were determined. Overexpression of hepatic FOXA3 reduced hepatic steatosis in chow-fed mice and attenuated Western diet-induced obesity and steatohepatitis. FOXA3 induced lipolysis and inhibited hepatic genes involved in bile acid uptake, resulting in elevated plasma bile acids. The beneficial effects of hepatic FOXA3 overexpression on Western diet-induced obesity and steatohepatitis were abolished in Tgr5-/- mice. Our data demonstrate that overexpression of hepatic FOXA3 prevents Western diet-induced obesity and steatohepatitis via activation of TGR5.


Subject(s)
Diet, Western , Hepatocyte Nuclear Factor 3-gamma , Liver , Mice, Inbred C57BL , Obesity , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Obesity/metabolism , Obesity/genetics , Obesity/etiology , Mice , Hepatocyte Nuclear Factor 3-gamma/metabolism , Hepatocyte Nuclear Factor 3-gamma/genetics , Liver/metabolism , Diet, Western/adverse effects , Male , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/etiology , Bile Acids and Salts/metabolism
3.
ACS Omega ; 9(8): 9577-9584, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434838

ABSTRACT

The roof aquifer of the Carboniferous Taiyuan Formation coal beds in the Liulin area severely restricts the development and utilization of coalbed methane (CBM). A method for quantitatively predicting high-water-production areas was established by analyzing the relationship between the geophysical logging data and water production. The results showed that the logging profile of the limestone aquifers in high-water-production wells was unique, with high acoustic velocity (AC), high γ-ray values (GR), and low resistivity (Rd). The developed pores and fractures in the roof limestone increase the interval transit time. The formation water in the pores and fractures of the roof limestone decreases the resistivity. The clay filling in the pores and fractures of the roof limestone originated from the dissolution product of limestone and hydrodynamic transportation, which resulted in increased GR values. Furthermore, the representative natural GR log data were used to calculate the clay content in limestone, which indicated that the clay content in limestone had a positive correlation with the water yield of the CBM wells. The water-bearing characteristics of roof limestone showed that the water content was higher in the northern area and decreased gradually toward the south. The method for predicting the high-water-production area was helpful for the CBM exploration and production.

4.
ACS Omega ; 9(7): 8151-8161, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405450

ABSTRACT

Unlike traditional shale gas reservoirs, where organic matter pores dominate, inorganic pores are the primary reservoir space in the Sinian (Ediacaran) high-maturity Doushantou dolomitic shale in western Hubei Province, China. The inorganic pore characteristics of Doushantuo shale and its influence on shale gas aggregation were investigated by examining the TOC content, thermal maturity, mineralogical composition, and field-emission scanning electron microscopy (SEM) and focused ion beam scanning electron microscopy (FIB-SEM) of drill cores. The results show that the shale mineral composition in the study area is primarily dolomite and plate-shaped interparticle-intercrystalline pores associated with dolomite are widespread inorganic pores in dolomitic shale. Interparticle-intercrystalline pores account for 75% of the total pores, with a pore size distribution mainly between 50 and 300 nm, as extracted from the 3D pore network model (PNM). Compared with organic pores, interparticle-intercrystalline pores provide greater space for gas storage and have a strong coupling relationship with the hydrocarbon generation and evolution of organic matter. Therefore, the inorganic pores in the Doushantuo Formation play a vital role in the enrichment and accumulation of shale gas. This study aims to establish a scientific basis for understanding the enrichment mechanism of shale gas in Doushantuo dolomitic shale and other inorganic pore-dominated shales in southern China.

5.
Obesity (Silver Spring) ; 32(1): 120-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37873741

ABSTRACT

OBJECTIVE: The adipose tissue-liver axis is a major regulator of the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Retinoic acid signaling plays an important role in development and metabolism. However, little is known about the role of adipose retinoic acid signaling in the development of obesity-associated NAFLD. In this work, the aim was to investigate whether and how retinoic acid receptor alpha (RARα) regulated the development of obesity and NAFLD. METHODS: RARα expression in adipose tissue of db/db or ob/ob mice was determined. Rarαfl/fl mice and adipocyte-specific Rarα-/- (RarαAdi-/- ) mice were fed a chow diet for 1 year or high-fat diet (HFD) for 20 weeks. Primary adipocytes and primary hepatocytes were co-cultured. Metabolic regulation and inflammatory response were characterized. RESULTS: RARα expression was reduced in adipose tissue of db/db or ob/ob mice. RarαAdi-/- mice had increased obesity and steatohepatitis (NASH) when fed a chow diet or HFD. Loss of adipocyte RARα induced lipogenesis and inflammation in adipose tissue and the liver and reduced thermogenesis. In the co-culture studies, loss of RARα in adipocytes induced inflammatory and lipogenic programs in hepatocytes. CONCLUSIONS: The data demonstrate that RARα in adipocytes prevents obesity and NASH via inhibiting lipogenesis and inflammation and inducing energy expenditure.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Adipocytes/metabolism , Diet, High-Fat/adverse effects , Energy Metabolism , Inflammation/metabolism , Lipogenesis/genetics , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/complications , Retinoic Acid Receptor alpha/genetics , Retinoic Acid Receptor alpha/metabolism , Tretinoin/metabolism
6.
Dev Cell ; 58(21): 2326-2337.e5, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37863040

ABSTRACT

High-density lipoprotein (HDL) metabolism is regulated by complex interplay between the scavenger receptor group B type 1 (SR-BI) and multiple signaling molecules in the liver. Here, we show that lipocalin-2 (Lcn2) is a key regulator of hepatic SR-BI, HDL metabolism, and atherosclerosis. Overexpression of human Lcn2 in hepatocytes attenuates the development of atherosclerosis via SR-BI in western-diet-fed Ldlr-/- mice, whereas hepatocyte-specific ablation of Lcn2 has the opposite effect. Mechanistically, hepatocyte Lcn2 improves HDL metabolism and alleviates atherogenesis by blocking Nedd4-1-mediated SR-BI ubiquitination at K500 and K508. The Lcn2-improved HDL metabolism is abolished in mice with hepatocyte-specific Nedd4-1 or SR-BI deletion and in SR-BI (K500A/K508A) mutation mice. This study identifies a regulatory axis from Lcn2 to HDL via blocking Nedd4-1-mediated SR-BI ubiquitination and demonstrates that hepatocyte Lcn2 may be a promising target to improve HDL metabolism to treat atherosclerotic cardiovascular diseases.


Subject(s)
Atherosclerosis , Lipoproteins, HDL , Mice , Humans , Animals , Lipoproteins, HDL/metabolism , Lipocalin-2/genetics , Lipocalin-2/metabolism , Hepatocytes/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Liver/metabolism , CD36 Antigens/metabolism
7.
Sci Total Environ ; 905: 166852, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37717750

ABSTRACT

Peroxyacetyl nitrate (PAN) is a typical secondary photochemical product in the atmospheric environment with significant adverse effects on human health and plant growth. In this study, PAN and other pollutants, as well as meteorological conditions were observed intensively from August to September in 2022 at a typical urban sampling site in Beijing, China. The mean and maximum PAN concentrations during the observation period were 1.00 ± 0.97 ppb and 4.84 ppb, respectively. Severe photochemical pollution occurred during the observation period, with the mean PAN concentration about 3.1 times higher than that during the clean period. There was a good positive correlation between O3 and PAN, and their correlation was higher during the O3 exposure period than that during the clean period. The simulated results by box-model coupled with the Master Chemical Mechanism (MCM v3.3.1) showed that the O3-related reactions were the largest sources of OH radicals during O3 exposure period, which was conducive to the co-contamination of PAN and O3. Acetaldehyde (CH3CHO) and methylglyoxal (MGLY) were the largest OVOCs precursors of peroxyacetyl radicals (PA), with the contributions to the total PA generated by OVOCs about 67 % - 83 % and 17 % - 30 %, respectively. The reduction of emissions from liquefied petroleum gas (LPG) and solvent usage has the highest reduction effect on PAN and O3, followed by the control of gasoline vehicle exhaust emissions. This study deepens the understanding of the PAN photochemistry in urban areas with high O3 background conditions and the impact of anthropogenic activities on the photochemical pollution. Meanwhile, the findings of this study highlight the necessity of strengthening anthropogenic emissions control to effectively reduce the co-contamination of PAN and O3 in Beijing in the future.

8.
Front Microbiol ; 14: 1219004, 2023.
Article in English | MEDLINE | ID: mdl-37608950

ABSTRACT

The broad-spectrum antimicrobial activity of Elsholtzia ciliate essential oil (ECO) has been previously reported, but its effectiveness against halitosis-causing bacteria such as Fusobacterium nucleatum and Porphyromonas gingivalis is not well understood. In this study, we investigated the bacteriostatic activity of ECO against planktonic cells and biofilms of F. nucleatum and P. gingivalis, as well as its ability to inhibit bacterial metabolism and production of volatile sulfur compounds (VSCs) at sub-lethal concentrations. Our findings revealed that ECO exhibited comparable activities to chlorhexidine against these oral bacteria. Treatment with ECO significantly reduced the production of VSCs, including hydrogen sulfide, dimethyl disulfide, and methanethiol, which are major contributors to bad breath. As the major chemical components of ECO, carvacrol, p-cymene, and phellandrene, were demonstrated in vitro inhibitory effects on F. nucleatum and P. gingivalis, and their combined use showed synergistic and additive effects, suggesting that the overall activity of ECO is derived from the cumulative or synergistic effect of multiple active components. ECO was found to have a destructive effect on the bacterial cell membrane by examining the cell morphology and permeability. Furthermore, the application of ECO induced significant changes in the bacterial composition of saliva-derived biofilm, resulting in the elimination of bacterial species that contribute to halitosis, including Fusobacterium, Porphyromonas, and Prevotella. These results provide experimental evidence for the potential clinical applications of ECOs in the prevention and treatment of halitosis.

9.
Cells ; 12(15)2023 08 05.
Article in English | MEDLINE | ID: mdl-37566087

ABSTRACT

Histone deacetylase Sirtuin 6 (SIRT6) regulates many biological processes. SIRT6 is known to regulate hepatic lipid metabolism and inhibit the development of nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the role of hepatocyte SIRT6 in the development of atherosclerosis and further characterize the mechanism underlying SIRT6's effect on NAFLD. Ldlr-/- mice overexpressing or lacking hepatocyte SIRT6 were fed a Western diet for 16 weeks. The role of hepatic SIRT6 in the development of nonalcoholic steatohepatitis (NASH), atherosclerosis, and obesity was investigated. We also investigated whether p53 participates in the pathogenesis of NAFLD in mice overexpressing hepatic SIRT6. Our data show that loss of hepatocyte SIRT6 aggravated the development of NAFLD, atherosclerosis, and obesity in Ldlr-/- mice, whereas adeno-associated virus (AAV)-mediated overexpression of human SIRT6 in the liver had opposite effects. Mechanistically, hepatocyte SIRT6 likely inhibited the development of NAFLD by inhibiting lipogenesis, lipid droplet formation, and p53 signaling. Hepatocyte SIRT6 also likely inhibited the development of atherosclerosis by inhibiting intestinal lipid absorption and hepatic VLDL secretion. Hepatic SIRT6 also increased energy expenditure. In conclusion, our data indicate that hepatocyte SIRT6 protects against atherosclerosis, NAFLD, and obesity by regulating lipid metabolism in the liver and intestine.


Subject(s)
Atherosclerosis , Non-alcoholic Fatty Liver Disease , Sirtuins , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Hepatocytes/metabolism , Obesity/complications , Sirtuins/genetics , Sirtuins/metabolism , Lipids , Homeostasis , Atherosclerosis/metabolism
10.
Cell Mol Life Sci ; 80(4): 106, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36952018

ABSTRACT

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a unique component of the ubiquitin-proteasome system (UPS), which has multiple activities in maintaining intracellular ubiquitin levels. We previously reported the aberrant low expression of UCHL1 in podocytes of non-immune complex-mediated glomerulonephritis, and recent studies indicate that anti-UCHL1 antibody was responsible for the refractory minimal change disease (MCD), but the specific effect of UCHL1 to the podocytopathy has not been determined. Therefore, we generated podocyte-specific UCHL1 gene knockout (UCHL1cre/cre) rats model. Podocyte-specific UCHL1 knockout rats exhibited severe kidney damage, including segmental/global glomerulosclerosis, kidney function damage and severe proteinuria, compared with littermate control. Subsequently, by carrying out mass spectrometry analysis of isolated glomeruli of rats, abnormal protein accumulation of ECM-receptor Interaction was found in UCHL1cre/cre rats. Mechanistic studies in vivo and in vitro revealed that aberrant protein accumulation after UCHL1 deficiency induced endoplasmic reticulum (ER) stress, unfolded protein reaction (UPR) to reduce the protein level of podocyte skeleton proteins, and CHOP mediated apoptosis as well, which related to the dysfunction of the ubiquitin-proteasome system with decreased free monomeric ubiquitin level, thereby affecting protein ubiquitination and degradation. In addition, inhibition of ER stress by 4-PBA could attenuate the degree of ER stress and podocyte dysfunction. Our study indicates that UCHL1 is a potential target for preventing podocytes injury in some non-immune complex-mediated glomerulopathy.


Subject(s)
Kidney Diseases , Podocytes , Rats , Animals , Podocytes/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitination , Endoplasmic Reticulum Stress/genetics , Kidney Diseases/metabolism , Ubiquitin Thiolesterase/metabolism
11.
Autophagy ; 19(8): 2240-2256, 2023 08.
Article in English | MEDLINE | ID: mdl-36779633

ABSTRACT

Acetaminophen (APAP) overdose is the predominant cause of drug-induced liver injury worldwide. The macroautophagy/autophagy-lysosomal pathway (ALP) is involved in the APAP hepatotoxicity. TFEB (transcription factor EB) promotes the expression of genes related to autophagy and lysosomal biogenesis, thus, pharmacological activation of TFEB-mediated ALP may be an effective therapeutic approach for treating APAP-induced liver injury. We aimed to reveal the effects of narirutin (NR), the main bioactive constituents isolated from citrus peels, on APAP hepatotoxicity and to explore its underlying mechanism. Administration of NR enhanced activities of antioxidant enzymes, improved mitochondrial dysfunction and alleviated liver injury in APAP-treated mice, whereas NR did not affect APAP metabolism and MAPK/JNK activation. NR enhanced TFEB transcriptional activity and activated ALP in an MTOR complex 1 (MTORC1)-independent but PPP3/calcineurin-dependent manner. Moreover, knockout of Tfeb or knockdown of PPP3CB/CNA2 (protein phosphatase 3, catalytic subunit, beta isoform) in the liver abolished the beneficial effects of NR on APAP overdose. Mechanistically, NR bound to PPP3CB via PRO31, LYS61 and PRO347 residues and enhanced PPP3/calcineurin activity, thereby eliciting dephosphorylation of TFEB and promoting ALP, which alleviated APAP-induced oxidative stress and liver injury. Together, NR protects against APAP-induced liver injury by activating a PPP3/calcineurin-TFEB-ALP axis, indicating NR may be a potential agent for treating APAP overdose.Abbreviations: ALP: autophagy-lysosomal pathway; APAP: acetaminophen; APAP-AD: APAP-protein adducts; APAP-Cys: acetaminophen-cysteine adducts; CAT: catalase; CETSA: cellular thermal shift assay; CQ: chloroquine; CYP2E1: cytochrome P450, family 2, subfamily e, polypeptide 1; CYCS/Cyt c: cytochrome c, somatic; DARTS: drug affinity responsive target stability assay; ENGASE/NAG: endo-beta-N-acetylglucosaminidase; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPT/ALT: glutamic pyruvic transaminase, soluble; GSH: glutathione; GPX/GSH-Px: glutathione peroxidase; KD: dissociation constant; Leu: leupeptin; MCOLN1: mucolipin 1; MTORC1: MTOR complex 1; NAC: N-acetylcysteine; NAPQI: N-acetyl-p-benzoquinoneimine; NFAT: nuclear factor of activated T cells; NR: narirutin; OA: okadaic acid; RRAG: Ras related GTP binding; ROS: reactive oxygen species; PPP3CB/CNA2: protein phosphatase 3, catalytic subunit, beta isoform; PPP3R1/CNB1: protein phosphatase 3, regulatory subunit B, alpha isoform (calcineurin B, type I); SOD: superoxide dismutase; SPR: surface plasmon resonance analysis; TFEB: transcription factor EB.


Subject(s)
Calcineurin , Chemical and Drug Induced Liver Injury, Chronic , Mice , Animals , Calcineurin/metabolism , Acetaminophen , Autophagy/genetics , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Glutathione/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , TOR Serine-Threonine Kinases/metabolism
12.
J Diabetes Res ; 2023: 1901105, 2023.
Article in English | MEDLINE | ID: mdl-36776229

ABSTRACT

The loss of podocyte is crucial for diagnosis and prognosis of diabetic kidney disease, whereas commonly two-dimensional methods for quantifying podocyte number existed with issues of low fidelity and accuracy. In this study, clear, unobstructed brain imaging cocktails and computational analysis (CUBIC), one of three-dimensional optical clearing approaches, was used which combines tissue clearing, immunolabeling, and a light-sheet microscope to image and evaluate podocytes in C57BL/6 (C57) and db/db mice. We discovered that 77 podocytes per glomerulus were in C57 mice. On the subject of db/db mice, there were 74 podocytes by the age of 8 w, 72 podocytes by the age of 12 w, and 66 podocytes by the age of 16 w, compared with 76 podocytes in the control group, suggesting that there was a significant decrease in podocyte number in db/db mice with the age of 16 w, showing a trend which positively correlated to the deterioration of kidney function. Sample size estimation using the PASS software revealed that taking 5%, 7.5%, and 10% of the mean podocyte number per glomerulus as the statistical allowable error and 95% as total confidence interval, 33, 15, and 9 glomeruli were independently needed to be sampled in C57 mice to represent the overall glomeruli to calculate podocyte number. Furthermore, in the control group of db/db mice, 36, 18, and 11 glomeruli were needed, compared with 46, 24, and 14 glomeruli in db/db mice by the age of 8 w, 43, 21, and 12 glomeruli by the age of 12 w, and 52, 27, and 16 by the age of 16 w. These findings indicated that precise quantification of podocyte number could judge the progression of diabetic kidney disease. In addition, a small number of glomeruli could be actually representative of the whole sample size, which indicated apparent practicability of CUBIC for clinical use.


Subject(s)
Diabetic Nephropathies , Podocytes , Mice , Animals , Sample Size , Mice, Inbred C57BL , Kidney Glomerulus , Mice, Inbred Strains
13.
J Mol Cell Biol ; 14(10)2023 03 29.
Article in English | MEDLINE | ID: mdl-36472556

ABSTRACT

Lipids and glucose exert many essential physiological functions, such as providing raw materials or energy for cellular biosynthesis, regulating cell signal transduction, and maintaining a constant body temperature. Dysregulation of lipid and glucose metabolism can lead to glucolipid metabolic disorders linked to various metabolic diseases, such as obesity, diabetes, and cardiovascular disease. Therefore, intervention in glucolipid metabolism is a key therapeutic strategy for the treatment of metabolic diseases. Activating transcription factor 3 (ATF3) is a transcription factor that acts as a hub of the cellular adaptive-response network and plays a pivotal role in the regulation of inflammation, apoptosis, DNA repair, and oncogenesis. Emerging evidence has illustrated the vital roles of ATF3 in glucolipid metabolism. ATF3 inhibits intestinal lipid absorption, enhances hepatic triglyceride hydrolysis and fatty acid oxidation, promotes macrophage reverse cholesterol transport, and attenuates the progression of western diet-induced nonalcoholic fatty liver disease and atherosclerosis. In addition to its role in lipid metabolism, ATF3 has also been identified as an important regulator of glucose metabolism. Here, we summarize the recent advances in the understanding of ATF3, mainly focusing on its role in glucose and lipid metabolism and potential therapeutic implications.


Subject(s)
Activating Transcription Factor 3 , Metabolic Diseases , Humans , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Liver/metabolism , Metabolic Diseases/metabolism , Glucose/metabolism , Lipid Metabolism , Lipids
14.
Life Sci ; 311(Pt B): 121186, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36375573

ABSTRACT

AIMS: The dedifferentiation of tubular epithelial cells has been identified as an important trigger of renal fibrosis. The Hippo pathway is a crucial regulator of cell proliferation and differentiation. In this study, we determined the role of Hippo proteins in tubular dedifferentiation in diabetic nephropathy (DN). MAIN METHODS: In this study, we measured dedifferentiation markers and Hippo proteins in db/db mice and high glucose treated tubular epithelial cells. Then, verteporfin and knockdown of large tumor suppressor kinase (LATS) 1 and 2 were performed to uncover therapeutic targets for DN. KEY FINDINGS: Here, we found dedifferentiation and upregulated Hippo proteins in tubular epithelial cells in DN model both in vivo and in vitro. Both verteporfin and LATS knockdown could inhibit the tubular mesenchymal transition, but verteporfin showed broad inhibitory effect on Hippo proteins, especially nuclear YAP, and exacerbated podocyte loss of DN. LATS2 knockdown did not reverse the tubular E-Cadherin loss while it also induced podocyte apoptosis. Overall, intervention of LATS1 inhibited tubular dedifferentiation efficiently without affecting YAP and bringing podocyte apoptosis. Further mechanistic investigations revealed that the TGF-ß1/Smad, instead of the YAP-TEAD-CTGF signaling, might be the underlying pathway through which verteporfin and LATS1 engaged in the tubular dedifferentiation. SIGNIFICANCE: In conclusion, verteporfin is not a suitable treatment for DN owing to evitable podocyte loss and apoptosis. Targeting LATS1 is a better choice worthy of further investigation for DN therapy.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Podocytes , Animals , Mice , Diabetic Nephropathies/metabolism , Podocytes/metabolism , Protein Serine-Threonine Kinases , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Verteporfin/pharmacology , Verteporfin/therapeutic use
15.
Cells ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: mdl-36291054

ABSTRACT

Retinoic acid signaling plays an important role in regulating lipid metabolism and inflammation. However, the role of retinoic acid receptor alpha (RARα) in atherosclerosis remains to be determined. In the current study, we investigated the role of macrophage RARα in the development of atherosclerosis. Macrophages isolated from myeloid-specific Rarα-/- (RarαMac-/-) mice showed increased lipid accumulation and inflammation and reduced cholesterol efflux compared to Rarαfl/fl (control) mice. All-trans retinoic acid (AtRA) induced ATP-binding cassette subfamily A member 1 (Abca1) and Abcg1 expression and cholesterol efflux in both RarαMac-/- mice and Rarαfl/fl mice. In Ldlr-/- mice, myeloid ablation of RARα significantly reduced macrophage Abca1 and Abcg1 expression and cholesterol efflux, induced inflammatory genes, and aggravated Western diet-induced atherosclerosis. Our data demonstrate that macrophage RARα protects against atherosclerosis, likely via inducing cholesterol efflux and inhibiting inflammation.


Subject(s)
Atherosclerosis , Cholesterol , Diet, Western , Macrophages , Retinoic Acid Receptor alpha , Animals , Mice , Atherosclerosis/etiology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Inflammation/genetics , Macrophages/metabolism , Retinoic Acid Receptor alpha/genetics , Retinoic Acid Receptor alpha/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Diet, Western/adverse effects , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Mice, Knockout
16.
Trends Pharmacol Sci ; 43(11): 920-939, 2022 11.
Article in English | MEDLINE | ID: mdl-35902281

ABSTRACT

Atherosclerotic cardiovascular disease (CVD), the major cause of premature human mortality, is a chronic and progressive metabolic and inflammatory disease in large- and medium-sized arteries. Mouse models are widely used to gain mechanistic insights into the pathogenesis of atherosclerosis and have facilitated the discovery of anti-atherosclerotic drugs. Despite promising preclinical studies, many drug candidates have not translated to clinical use because of the complexity of disease patho-mechanisms including lipid metabolic traits and inflammatory, genetic, and hemodynamic factors. We review the current preclinical utility and translation potential of traditional [apolipoprotein E (APOE)- and low-density lipoprotein (LDL) receptor (LDLR)-deficient mice] and emerging mouse models that include partial carotid ligation and AAV8-Pcsk9-D377Y injection in atherosclerosis research and drug discovery. This article represents an important resource in atherosclerosis research.


Subject(s)
Atherosclerosis , Proprotein Convertase 9 , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Disease Models, Animal , Humans , Lipoproteins, LDL , Mice , Mice, Knockout , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Translational Research, Biomedical
17.
Diabetes ; 71(10): 2136-2152, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35822944

ABSTRACT

Adipose tissue macrophage (ATM) has been shown to play a key role in the pathogenesis of obesity-associated adipose tissue inflammation and metabolic diseases. However, the upstream factors that integrate the environmental signals to control ATM activation and adipose inflammation in obesity remain elusive. Here, we identify BAF60a, a subunit of the switch/sucrose-nonfermentable (SWI/SNF) chromatin remodeling complexes, as the central checkpoint regulator of obesity-induced ATM activation, adipose tissue inflammation, and systemic metabolic impairment. BAF60a expression was robustly downregulated in the adipose tissue stromal vascular fractions in type 2 diabetic mice. Myeloid-specific BAF60a knockout (BaMKO) promotes ATM proinflammatory activation, exacerbating diet-induced obesity, insulin resistance, and metabolic dysfunction. Conversely, myeloid-specific overexpression of BAF60a in mice attenuates macrophage proinflammatory activation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that BAF60a inactivation triggers the expression of proinflammatory gene program through chromatin remodeling. Moreover, motif analysis of ATAC-Seq and CUT&Tag-Seq data identifies the transcription factor Atf3 that physically interacts with BAF60a to suppress the proinflammatory gene expression, thereby controlling ATM activation and metabolic inflammation in obesity. Consistently, myeloid-specific Atf3 deficiency also promotes the proinflammatory activation of macrophage. This work uncovers BAF60a/Atf3 axis as the key regulator in obesity-associated ATM activation, adipose tissue inflammation, and metabolic diseases.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Adipose Tissue/metabolism , Animals , Chromatin/metabolism , Chromosomal Proteins, Non-Histone , Diabetes Mellitus, Experimental/metabolism , Diet , Inflammation/genetics , Inflammation/metabolism , Insulin Resistance/genetics , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/metabolism , Sucrose/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Hepatol Commun ; 6(10): 2665-2675, 2022 10.
Article in English | MEDLINE | ID: mdl-35852305

ABSTRACT

All-trans retinoic acid (AtRA) is an active metabolite of vitamin A that influences many biological processes in development, differentiation, and metabolism. AtRA functions through activation of retinoid acid receptors (RARs). AtRA is shown to ameliorate hepatic steatosis, but the underlying mechanism is not well understood. In this study, we investigated the role of hepatocyte RAR alpha (RARα) in mediating the effect of AtRA on hepatosteatosis in mice. Hepatocyte-specific Rarα-/- (L-Rarα-/- ) mice and their control mice were fed a chow diet, high-fat diet (HFD), or a high-fat/cholesterol/fructose (HFCF) diet. Some of the mice were also treated with AtRA. Loss of hepatocyte RARα-induced hepatosteatosis in chow-fed aged mice and HFD-fed mice. AtRA prevented and reversed HFCF diet-induced obesity and hepatosteatosis in the control mice but not in L-Rarα-/- mice. Furthermore, AtRA reduced hepatocyte fatty acid uptake and lipid droplet formation, dependent on hepatocyte RARα. Our data suggest that hepatocyte RARα plays an important role in preventing hepatosteatosis and mediates AtRA's effects on diet-induced hepatosteatosis.


Subject(s)
Receptors, Retinoic Acid , Vitamin A , Animals , Diet , Fatty Acids , Fructose , Mice , Receptors, Retinoic Acid/genetics , Retinoic Acid Receptor alpha/genetics , Tretinoin/pharmacology
19.
Basic Res Cardiol ; 117(1): 2, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35024970

ABSTRACT

Coronary microvascular dysfunction is prevalent among people with diabetes and is correlated with cardiac mortality. Compromised endothelial-dependent dilation (EDD) is an early event in the progression of diabetes, but its mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelium-dependent vasodilatory metabolite in the healthy coronary circulation, but this switches to hydrogen peroxide (H2O2) in coronary artery disease (CAD) patients. Because diabetes is a significant risk factor for CAD, we hypothesized that a similar NO-to-H2O2 switch would occur in diabetes. Vasodilation was measured ex vivo in isolated coronary arteries from wild type (WT) and microRNA-21 (miR-21) null mice on a chow or high-fat/high-sugar diet, and B6.BKS(D)-Leprdb/J (db/db) mice using myography. Myocardial blood flow (MBF), blood pressure, and heart rate were measured in vivo using contrast echocardiography and a solid-state pressure sensor catheter. RNA from coronary arteries, endothelial cells, and cardiac tissues was analyzed via quantitative real-time PCR for gene expression, and cardiac protein expression was assessed via western blot analyses. Superoxide was detected via electron paramagnetic resonance. (1) Ex vivo coronary EDD and in vivo MBF were impaired in diabetic mice. (2) Nω-Nitro-L-arginine methyl ester, an NO synthase inhibitor (L-NAME), inhibited ex vivo coronary EDD and in vivo MBF in WT. In contrast, polyethylene glycol-catalase, an H2O2 scavenger (Peg-Cat), inhibited diabetic mouse EDD ex vivo and MBF in vivo. (3) miR-21 was upregulated in diabetic mouse endothelial cells, and the deficiency of miR-21 prevented the NO-to-H2O2 switch and ameliorated diabetic mouse vasodilation impairments. (4) Diabetic mice displayed increased serum NO and H2O2, upregulated mRNA expression of Sod1, Sod2, iNos, and Cav1, and downregulated Pgc-1α in coronary arteries, but the deficiency of miR-21 reversed these changes. (5) miR-21-deficient mice exhibited increased cardiac PGC-1α, PPARα and eNOS protein and reduced endothelial superoxide. (6) Inhibition of PGC-1α changed the mRNA expression of genes regulated by miR-21, and overexpression of PGC-1α decreased the expression of miR-21 in high (25.5 mM) glucose treated coronary endothelial cells. Diabetic mice exhibit a NO-to-H2O2 switch in the mediator of coronary EDD, which contributes to microvascular dysfunction and is mediated by miR-21. This study represents the first mouse model recapitulating the NO-to-H2O2 switch seen in CAD patients in diabetes.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Experimental , MicroRNAs , Animals , Coronary Artery Disease/metabolism , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Hydrogen Peroxide/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , RNA, Messenger/metabolism , Superoxides/metabolism , Vasodilation/physiology
20.
Diabetes ; 70(11): 2506-2517, 2021 11.
Article in English | MEDLINE | ID: mdl-34475098

ABSTRACT

Activating transcription factor 3 (ATF3) has been shown to play an important role in HDL metabolism; yet, the role of hepatocytic ATF3 in the development of steatohepatitis remains elusive. Here we show that adenoassociated virus-mediated overexpression of human ATF3 in hepatocytes prevents diet-induced steatohepatitis in C57BL/6 mice and reverses steatohepatitis in db/db mice. Conversely, global or hepatocyte-specific loss of ATF3 aggravates diet-induced steatohepatitis. Mechanistically, hepatocytic ATF3 induces hepatic lipolysis and fatty acid oxidation and inhibits inflammation and apoptosis. We further show that hepatocyte nuclear factor 4α (HNF4α) is required for ATF3 to improve steatohepatitis. Thus, the current study indicates that ATF3 protects against steatohepatitis through, at least in part, hepatic HNF4α. Targeting hepatic ATF3 may be useful for treatment of steatohepatitis.


Subject(s)
Activating Transcription Factor 3/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Activating Transcription Factor 3/genetics , Animals , Diet, Western , Gene Expression Regulation/physiology , Hepatic Stellate Cells , Hepatocyte Nuclear Factor 4/genetics , Hepatocytes/metabolism , Humans , Kupffer Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...