Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Appl Spectrosc ; : 37028241245136, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646741

ABSTRACT

Two-dimensional correlation spectroscopy is used to investigate the intermolecular interaction between two substances dissolved in the same solutions, where the intermolecular interaction is described by two reversible reactions producing two supramolecular aggregates. The severe overlappings expected among the characteristic peaks of the original solute and aggregates make conventional one-dimensional spectra difficult to accurately reflect the physiochemical nature of the intermolecular interaction. The double asynchronous orthogonal sample design (DAOSD) approach is utilized to analyze the simulated data for proof-of-principle demonstration. The patterns of cross-peaks are much more complex compared with the intermolecular interaction described by only a single reaction. Four major groups of cross-peaks with characteristic patterns observed in the pair of DAOSD asynchronous spectra are systematically analyzed and classified. Further analysis of the spectral feature of the cross-peaks of the DAOSD asynchronous spectra is helpful to exact additional information concerning the variation of the peak position and peak width of the aggregates compared with those of the original solute. The result is important to reveal the physicochemical nature of intermolecular interaction between the solutes (e.g., changes in conformation, dynamical behavior, etc.). The pattern of cross-peaks in the corresponding 2D asynchronous spectra may become rather complex when the peak position, peak width, and peak intensity of two supramolecular aggregates change simultaneously. Further work using artificial intelligence techniques to interpret the complex cross-peaks is still being carried out.

2.
Anal Chem ; 94(4): 2348-2355, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35041394

ABSTRACT

A supramolecular complex may be formed by two solutes via a weak intermolecular interaction in a solution. The spectrum of the complex is often inundated by the spectra of the solutes that are not involved in the intermolecular interaction. Herein, a novel spectral analysis approach is proposed to retrieve the spectrum of the supramolecular complex. First, a two-dimensional (2D) asynchronous spectrum is constructed. Then, a genetic algorithm is used to obtain a heuristic spectrum of the supramolecular complex. The heuristic spectrum is a linear combination of the spectrum of the complex and the spectrum of a solute. The coefficients of the linear combination are then obtained, according to which the equilibrium constants are invariant among the sample solutions used to construct the 2D asynchronous spectrum. We have applied the approach to a supramolecular system formed by benzene and I2. In the analysis, several binding models are evaluated, and a benzene molecule interacting with two iodine molecules via halogen bonding turns out to be the only possible model. Hence, the characteristic band of the benzene/I2 supramolecular complex around 1819 cm-1 in the Fourier transform infrared (FTIR) spectrum and the corresponding equilibrium constant are obtained. The above results indicate that the novel approach provides a chance to get new insight into various intermolecular interactions studied by spectroscopy.


Subject(s)
Algorithms , Research Design , Protein Structure, Secondary , Solutions , Spectroscopy, Fourier Transform Infrared/methods
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119427, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33461134

ABSTRACT

Terbium acetylsalicylate has been prepared, and the ethanol solution of the complex exhibits strong luminescence under the excitation of ultraviolet radiation. When a small amount of bilirubin solution is introduced into the solution containing a high concentration of terbium acetylsalicylate, a remarkable diminution of the luminescence of the terbium complex was observed. Investigations on the behavior and life-time of luminescence indicate that the quenching is not caused by forming a stable non-luminescent product via a reaction between terbium acetylsalicylate and bilirubin. A π-π interaction between the chromophore of bilirubin and the aromatic moiety of ligand was revealed via the pattern of cross peaks in the 2D asynchronous spectrum generated using the DAOSD (double asynchronous orthogonal sample design) approach. Such an interaction paves a route for energy transfer in the quenching process. The combination of a high concentration of the terbium complex and a long life-time of luminescence in the lanthanide complex/bilirubin system forms a special scenario: a bilirubin molecule by diffusion may visit and deactivate dozens of excited terbium complexes within the half-life period of the lanthanide complex. This is why a small amount of bilirubin can bring about the significant reduction of luminescence on the solution containing a high concentration of the terbium complex.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118789, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32799191

ABSTRACT

Systematic Absence of Cross Peaks (SACPs) in a two-dimensional (2D) asynchronous spectrum, a sensitive indicator of the signal purity, is very important in analyzing bilinear data. However, identification of SACPs in practice remains a challenge because of noise in the corresponding 2D asynchronous spectrum. We firstly show that SACP can be identified via a statistical test using a large amount of 2D asynchronous spectra. To meet the practical demand that SACPs must be identified based on a single 2D asynchronous spectrum in many cases, we use a 2D quotient spectrum (Q (x, y)) as an effective auxiliary tool to recognize SACPs. The expectation of Q(x, y) is zero when (x, y) is within SACP or background regions in the corresponding 2D asynchronous spectrum. When (x, y) is in a cross-peak region, the expectation of the absolute value of Q(x, y) is a constant regardless of whether the cross-peak in a 2D asynchronous spectrum is strong or weak. Thus, a unified threshold can be set up to differentiate the SACP region from cross-peak region via the auxiliary 2D quotient spectrum. We have applied this approach on two real-world examples and satisfactory results have been obtained. This result demonstrates that the statistical test with a 2D quotient spectrum is applicable in real-world systems.

5.
Anal Chem ; 92(1): 1477-1484, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31808687

ABSTRACT

An approach to construct a secondary asynchronous spectrum via sample-sample correlation (SASS) is proposed to analyze bilinear data from hyphenated spectroscopic experiments. In SASS, bilinear data is used to construct a series of two-dimensional (2D) sample-sample correlation spectra. Then a vertical slice is extracted from each 2D sample-sample correlation spectrum so that a secondary 2D asynchronous spectrum is constructed via these slices. The advantage of SASS is demonstrated by a model system with the following challenging situations: (1) Temporal profiles of different components severely overlap, making spectra of pure components difficult to directly obtain from either original bilinear data or multivariate curve resolution-alternating least squares (MCR-ALS) with non-negativity and unimodality constraints. (2) Every peak in the spectra of the eluted samples contains contributions from at least two components. Hence, two-dimensional correlation spectroscopy (2D-COS) and n-dimensional (nD) asynchronous spectroscopic method developed in our previous work, which previously worked so well, are now invalid. SASS managed to reveal different groups of systematic absences of cross peaks (SACPs) that reflect the lack of spectral contributions of different components at different regions in the second asynchronous spectrum. Spectra of different components can still be faithfully retrieved via MCR-ALS calculation using constraints revealed by different groups of SACPs. The results demonstrate that implicit but intrinsic information revealed by SASS is indispensable in solving challenging bilinear data as the model system. We applied SASS on two real-world examples from thermogravimetry-Fourier transform infrared spectroscopy (TG-FT-IR) experiments of mixtures (H2O/HOD/D2O and H2O/isopropanol/pyridine). FT-IR spectra of different components were successfully recovered. Moreover, FT-IR spectrum of HOD, which is difficult to obtain, was successfully extracted. SASS can be applied in the analysis of gaseous mixtures from TG-FT-IR experiment and a combination of quantum cascade lasers with substrate-integrated hollow waveguides in environmental monitoring and biomedical diagnosis. Furthermore, SASS is also useful in various advanced hyphenated spectroscopic experiments.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 220: 117103, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31146205

ABSTRACT

A novel approach to use two-dimensional correlation spectroscopy (2D-COS) to analyze bilinear data is proposed. A phenomenon called Systematic Absence of Cross Peaks (SACPs) is observed in a 2D asynchronous spectrum. Two theorems relevant to SACPs have been derived. The SACP-based 2D-COS method has been successfully applied on analyzing bilinear data from mixed samples (including one model system and two real systems). Implicit isolated peaks can be identified and assigned to different components based on characteristic pattern of SACPs even if the time-related profiles of different components are severely overlapped. Based on the results of SACPs, spectra of pure components can be retrieved. Identification of SACPs can still be achieved in the presence of artifacts. Thus, neither noise nor baseline drift can produce significant influence on the results obtained from the approach described in this paper. We have used several well-established chemometric methods, including N-Findr, VCA, and MCR with various initial settings, on two systems that can be successfully solved using the 2D-COS method. The chemometric methods mentioned above cannot provide correct spectra of pure components because of severe problem of rotational ambiguity derived from severe overlapping of the time-related profiles. Only when the information from SACPs in 2D-COS is used as additional constraints in MCR calculation, correct spectra can be obtained. That is to say, the SACP-based 2D-COS method provides intrinsic information which is crucial in the analysis of chromatographic-spectroscopic and analogous data even if the time-related profiles of different components overlap severely.

7.
Article in English | MEDLINE | ID: mdl-30877894

ABSTRACT

A novel approach to constructing high-dimensional asynchronous spectra (nD-Asyn) is proposed. Three theorems relevant to 1D slices of nD-Asyn are revealed. nD-Asyn is used to analyze bilinear data from mixtures containing multiple components obtained via hyphenated techniques. The spectral contribution of different components can be removed in a stepwise manner by increasing the dimensions of asynchronous spectra. As a result, the spectra of different components can be faithfully recovered even if the time-related profiles of different components severely overlap. Moreover, correct results can still be obtained via the nD-Asyn even if a considerable level of noise and baseline drift are present. The nD-Asyn approach is compared with MCR-ALS using different constraints in analyzing the data for a simulated and also for a real system. The nD-Asyn produced correct spectrum of every component. Only when complete constraints obtained from nD-Asyn method is utilized in the MCR-ALS calculation, correct spectra of all the components can be obtained. Thus, nD-Asyn can be used alone or in conjunction with MCR-ALS to analyze bilinear data containing contributions of multiple components.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 197: 126-132, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29449087

ABSTRACT

3A2g→3T1g(P) transition band of Ni2+ is used to probe the coordination of Ni2+. Two-dimensional asynchronous spectra (2DCOS) are generated using the Double Asynchronous Orthogonal Sample Design (DAOSD), Asynchronous Spectrum with Auxiliary Peaks (ASAP) and Two-Trace Two-Dimensional (2T2D) approaches. Cross peaks relevant to the 3A2g→3T1g(P) transition band of Ni2+ are utilized to probe coordination between Ni2+ and various ligands. We studied the spectral behavior of the 3A2g→3T1g(P) transition band when Ni2+ is coordinated with ethylenediaminetetraacetic acid disodium salt (EDTA). The pattern of cross peaks in 2D asynchronous spectrum demonstrates that coordination brings about significant blue shift of the band. In addition, the absorptivity of the band increases remarkably. The interaction between Ni2+ and galactitol is also investigated. Although no clearly observable change is found on the 3A2g→3T1g(P) transition band when galactitol is introduced, the appearance of cross peak in 2D asynchronous spectrum demonstrates that coordination indeed occurs between Ni2+ and galactitol. Furthermore, the pattern of cross peak indicates that peak position, bandwidth and absorptivity of the 3A2g→3T1g(P) transition band of Ni(galactitol)x2+ is considerably different from those of Ni(H2O)62+. Thus, 2DCOS is helpful to reveal subtle spectral variation, which might be helpful in shedding light on the physical-chemical nature of coordination.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(8): 2241-5, 2015 Aug.
Article in Chinese | MEDLINE | ID: mdl-26672302

ABSTRACT

We reported a new super-concentrated hydrochloric acid system prepared by using tri-n-butyl phosphate (TBP)-constructed reversed micelles at ambient temperature and pressure. According to the titration result, the molar ratio of H+ to H2O (denoted as nH+/nH2O) in the super-concentrated HCl range from 0.50 to 1.50 which are higher than that in saturated aqueous HCl bulk solution (0.28). Significant a moment of hydrochloric acid is confined in W/O reversed micelles. Therefore, the behavior and status of HCl are different from those of conventional bluk solution. FTIR spectroscopic results demonstrate that a significant amount of HCl remains in the molecular form rather than being ionized into H+ and Cl-. Thus, super-concentrated HCl provides an extraordinary chemical environment which may have significant influence on certain substances. We found that the color of the solution is reddish brown when copper ion is dissolved in super-concentrated HCl, while the color of the saturated HCl aqueous solution (37 Wt%) containing copper ion is green. That is to say, the copper ions exist in a special state under the unique chemical environment of super-concentrated HCl. UV-Vis-NIR spectra indicate that both d-d transition band and charge transfer transition band of copper ions in super-concentrated HCl solution underwent significant variations. In addition, copper ions also have obvious influence on the hydrogen bond network among HCl in the super-concentrated HCl solution. Remarkable variation is introduced in the H-Cl stretching band in FTIR spectra.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(5): 1193-8, 2015 May.
Article in Chinese | MEDLINE | ID: mdl-26415426

ABSTRACT

In the present work, computer simulation was performed on a model chemical system where two solutes (denoted as P and Q, respectively) are dissolved in the same solution. Under intermolecular interaction between P and Q, part of P undergoes subtle structural variation and converts into U while part of Q converts into V. The strength of intermolecular interaction can be characterized by the corresponding equilibrium constant K. Our preliminary studies indicate that the S/N ratio of cross peak increases considerably as n increases. Moreover, the S/N ratio of the cross peak from the asynchronous spectra can be improved significantly when the suitable concentrations of P and Q are adopted. This work is helpful for a selection of suitable concentration sequence to maximize S/N ratio of cross peaks in the 2D asynchronous spectra generated by using the DAOSD approach proposed in our previous study so that weak intermolecular interaction can be probed.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(9): 2346-50, 2014 Sep.
Article in Chinese | MEDLINE | ID: mdl-25532323

ABSTRACT

The authors tried to establish an approach to use acids to convert biomass into a fuel with higher carbon content and lower oxygen content in a zero-energy-consumption fashion. Considering that biomass is composed of monosaccharide, we used aqueous solutions of variation acids including hydrochloric acid, sulfuric acid and perchloric acid to treat 2-deoxy-ribose and fructose at ambient temperature and pressure. Black substances were produced after a period of time when 2-deoxy-ribose and fructose were mixed with aqueous solutions containing 8 mol · L(-1) acids. The black substance was collected and characterized by using elemental analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Elemental analysis results indicate that the contents of carbon increases significantly in the black substances in comparison with 2-deoxy-ribose and fructose. Moreover, XPS results indicate that the content of oxygen in the black substance undergoes a significant decrease compared with pure 2-deoxy-ribose and fructose. In the XPS spectra, the is peaks of 2-deoxy-ribose, strong sub peak at 286. 05 eV, which is assigned to carbon linked to oxygen directly, dominate in the C is peak envelop. After treatment by HClO4, the peak decreased dramatically. This result also supports the conclusion that the content of oxygen in mono-saccharide is significantly reduced after treatment by acids. In the FTIR spectra of the black substances, strong peaks can be observed around 1 600 cm(-1), indicating that C==C bond is formed in the product. The above results suggest that treatments with acids may be developed as a new zero-energy-consumption approach to convert biomass in a new fuel with improved energy output efficiency.


Subject(s)
Acids/chemistry , Biofuels , Carbohydrates/chemistry , Carbon/chemistry , Spectroscopy, Fourier Transform Infrared , Biomass , Oxygen , Photoelectron Spectroscopy
12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 994-8, 2014 Apr.
Article in Chinese | MEDLINE | ID: mdl-25007616

ABSTRACT

Tb(2-FBA)3 x 2H2O and Tb(2-FBA)3 phen were synthesized using o-fluoro-benzoic acid (2-FBA) as the first ligand, and 1,10-phenanthroline (phen) as the second ligand. Elemental analysis and IR spectra were employed to characterize the molecular composition of the two kinds of lanthanide complexes. The UV absorption spectra with same concentration show that the second ligand phen of Tb(2-FBA)3 phen absorbs the portion of the UV light instead of the first ligand 2-FBA. Liquid fluorescence spectra with same concentration show that the fluorescence intensity of Tb(2-FBA)3 x 2H2O is higher than that of Tb (2-FBA)3 phen. The analytical results show that the energy level of 2-FBA matches the lowest excited state energy level of Tb3+ (5D4) better than that of phen. The O-H oscillation of the crystal water in Tb(2-FBA)3 x 2H2O will greatly consume the absorbed energy by ligands, and cause the fluorescence intensity of Tb(2-FBA)3 x 2H2O significantly decline. The energy level of triplet state of the first ligand 2-FBA corresponding to the absorption peak 273 nm has poor matching degree with the 5D4 energy level of Tb3+. In this case, the emission intensity of Tb(2-FBA)3 x 2H2O is still stronger than that of Tb(2-FBA)3 phen. It illustrates that the energy level of the triplet state of the first ligand 2-FBA corresponding to 252 nm has much better matching degree with the lowest excited state of 5D4 energy level of Tb3+ than that of phen. It is the only way to compensate for energy loss by thermal vibration of water molecules and low energy transfer efficiency for poor matching degree between the energy level of corresponding to 273 nm of the first ligand 2-FBA and 5D4 energy level of Tb3+. By combining UV absorption spectra with fluorescence spectra of lanthanide complexes to qualitatively analyze energy level of ligands, the contribution of different types of ligands to the fluorescence properties can be preliminarily understood.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 124: 697-702, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24582337

ABSTRACT

Two-dimensional (2D) synchronous spectroscopy together with a new approach called "Orthogonal Sample Design Scheme" was used to study the dipole-dipole interactions in two representative ternary chemical systems (N,N-dimethyllformamide (DMF)/CH3COOC2H5/CCl4 and C60/CH3COOC2H5/CCl4). For the first system, dipole-dipole interactions among carbonyl groups from DMF and CH3COOC2H5 are characterized by using the cross peak in 2D Fourier Transform Infrared Radiation (FT-IR) spectroscopy. For the second system, intermolecular interaction among π-π transition from C60 and vibration transition from the carbonyl band of ethyl acetate is probed by using 2D spectra. The experimental results demonstrate that "Orthogonal Sample Design Scheme" can effectively remove interfering part that is not relevant to intermolecular interaction. Additional procedures are carried out to preclude the possibilities of producing interfering cross peaks by other reasons, such as experimental errors. Dipole-dipole interactions that manifest in the form of deviation from the Beer-Lambert law generate distinct cross peaks visualized in the resultant 2D synchronous spectra of the two chemical systems. This work demonstrates that 2D synchronous spectra coupled with orthogonal sample design scheme provide us an applicable experimental approach to probing and characterizing dipole-dipole interactions in complex molecular systems.


Subject(s)
Models, Molecular , Spectroscopy, Fourier Transform Infrared/methods , Acetates/chemistry , Chloroform/chemistry , Dimethylformamide/chemistry , Fullerenes , Solutions , Spectrophotometry, Ultraviolet
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(7): 1734-8, 2013 Jul.
Article in Chinese | MEDLINE | ID: mdl-24059164

ABSTRACT

In the present paper, the absorption spectra of Ho3+ (0.5 mol%)-doped oxyfluoride glass (FOG) sample and Ho3+ (0.5 mol%)-doped oxyfluoride vitroceramics (FOV) sample were measured through experiment. The authors calculated the intensity parameters omega 2, 4, 6 of the two materials according to J-O theory, and analyzed the possible reason for the difference between the two materials on the intensity parameters. After that the authors calculated oscillator strength, spontaneous radiative transition rate, branching ratio and integrated emission cross section and some other spectroscopic parameters of several excited states and then made a comparative analysis of the two materials based on these spectroscopic parameters. The authors found that the oscillator strength of trivalent holmium iron in FOV is about the same with the oscillator strength in YAlO3 and is similar to oscillator strength in FOG, while slightly larger than in that LBTAF and much larger than that in LaF3 and ZBLAN. By analyzing the calculated spectroscopic parameters, it can be found that some transitions, especially 5I7 --> 5I8, 5F5 --> 5I8 etc., have a relatively large oscillator strengths(larger than 10(-6)) and large integrated emission cross sections(larger than 10(-18) cm). These transitions have the conditions to form laser passages, so they are worth a lot of attention. At last, application prospects of several strong luminescence transitions were concluded.

15.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 5): m257-8, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23723769

ABSTRACT

In the title Er(III)-erythritol complex, [Er(NO3)3(C2H5OH)(C4H10O4)], the Er(III) cation is chelated by one erythritol mol-ecule, three nitrate anions and an ethanol mol-ecule, completing an irregular ErO10 coordination geometry. The Er-O bond lengths are in the range 2.348 (3)-2.583 (3) Å. In the crystal, extensive O-H⋯O hydrogen bonding links the mol-ecules into a three-dimensional supra-molecular structure.

16.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 4): m182-3, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23633987

ABSTRACT

The title Sm(III)-erythritol complex, [Sm(NO3)3(C2H6O)(C4H10O4)], is isotypic with its Nd, Eu, Y, Gd, Tb and Ho analogues. The Sm(III) cation exhibits a coordination number of ten and is chelated by a tridentate erythritol ligand and three bidentate nitrate anions. It is additionally coordinated by an O atom of an ethanol mol-ecule, completing an irregular coordination sphere. The Sm-O bond lengths range from 2.416 (2) to 2.611 (2) Å. In the crystal, extensive O-H⋯O hydrogen bonding involving all hy-droxy groups and some of the nitrate O atoms links the mol-ecules into a three-dimensional network.

17.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 3): m162-3, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23476505

ABSTRACT

In the title Ho(III)-erythritol complex, [Ho(NO3)3(C4H10O4)(C2H5OH)], the Ho(III) cation is chelated by a tridentate erythritol ligand and three bidentate nitrate anions. An ethanol mol-ecule further coordinates the Ho(III) cation, completing the irregular O10 coordination geometry. In the crystal, an extensive O-H⋯O hydrogen-bond network links the mol-ecules into a three-dimensional supra-molecular structure.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(11): 2935-9, 2013 Nov.
Article in Chinese | MEDLINE | ID: mdl-24555355

ABSTRACT

The purpose of the present study was to compare the changes of infrared spectrum of breast cancer cell line MCF-7 treated by 5-fluorouracil with various concentrations and treating time. The results indicate that the relative intensity ratios of I2 920/I1 460 increased in the FTIR spectra of cell line MCF-7 while I1 400/I1 460, I1 080 /I1 550 and I1 240/I1 550 decreased significantly within forty-eight hours, however, no regular change was observed during 48-72 hours. The relative intensity ratio of I1 640/ I1 550 decreases along with the increase in the concentration of 5-fluorouracil. The changes of infrared spectra are consistent with the biochemical changes in breast cancer cell, and it can be the reference designators when assessing curative effect of breast cancer cell by FTIR spectrometry.


Subject(s)
Breast Neoplasms/metabolism , Cell Line, Tumor/drug effects , Fluorouracil , Spectroscopy, Fourier Transform Infrared , Humans
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(12): 3169-74, 2013 Dec.
Article in Chinese | MEDLINE | ID: mdl-24611364

ABSTRACT

The aim of the present study was to evaluate Fourier transform infrared spectroscopy (FTIR) monitoring of biochemical changes in apoptosis cells. Different concentrations of 5-fluorouracil (5-FU) treated colon cancer cell lines SW620 were used to determine the optimum concentration of 5-FU IC50 by means of MTT assay. Cell starvation and 5-Fu synergistic cell cycle arrest was in G1 and S phase. FTIR combined with flow cytometry was applied to analysis of SW 620 cells and SW620 cells treated with 5-FU for 12h, 24h (early apoptosis) and 48 h (late apoptosis) respectively. The peak position and the intensity of all bands were measured and comparison was made between the SW620 and apoptotic SW620 cells. Apoptosis cells have following characteristics compared with SW620 cells (1) The band at 1 740 cm-1 is an C=O stretching vibration. Changes in these bands can reflect lipid changes, and relative peak intensity ratio 11740/11460 significantly increased (p<0. 05), indicating that the relative contents of lipid in apoptosis cells increased. (2) The band at the 1 410 cm-1 peak represents that C-H stretching related was increased to amino acid residues and shifted to higher wave numbers compared to other groups. I1410o/I 460 at early and late death phase was significantly increased, which suggests that the relative contents of amino acid residues in apoptosis cells increased (p <0. 05). New vibrational bands at 1 120 cm-1 appeared at 24 h and increased at 48 h compared with other groups. The 1 120 cm-1 absorption band is mainly due to ser, serine and threonine C-O(H) stretching vibration, and I1120/I 1460 significantly increased (p<0. 05), indicating that the relative quantity of amino acid residues in apoptosis cells increased due to that DNA unwinds the double helix. (3) 1 240 cm-1 is mainly due to the asymmetric stretching modes of phosphodiester groups shifting to higher wave number, illustrating that nucleic acid conformation was changed in apoptosis cells. (4) The band 1 040 cm-1 associated with polysaccharide appeared at 24 and 48 h, meanwhile shifted to higher wave number, suggesting that polysaccharide decreased in late apoptotic cells, and I 1040/I1400 increased at late stage apoptosis, indicating that the relative content of polysaccharide in apoptosis cells increased. The authors' results suggest that FTIR applied to monitoring SW620 cells apoptosis may be as a potential diagnostic tool for cancer chemotherapy monitoring.


Subject(s)
Apoptosis , Fluorouracil , Spectroscopy, Fourier Transform Infrared , Cell Line, Tumor , Colonic Neoplasms/pathology , Humans
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(9): 2354-7, 2012 Sep.
Article in Chinese | MEDLINE | ID: mdl-23240395

ABSTRACT

The authors synthesized a new kind of green pigment via co-precipitation method by doping Y3Al5O12 with Cr+. The size of the pigment particles is around 200 nm as observed under scanning electron microscope. XRD results demonstrate that the pigment crystalline form of the pigment is yttrium alluminium garnet. UV-Vis spectra were used to investigate the coordination states and transition behavior of the doping ions. In addition, the colour feature was measured by CIE L* a* b* chroma value. The pigment was blended with polypropylene and then polypropylene fiber was produced using the polypropelene-pigment composite via molten spinning process. The distribution of the pigment particles in the polypropylene fibers was characterized by Xray computed tomography (CT) technique on the Beijing synchrotron radiation facility. The result states that the composite oxide pigment particles are homogeneously dispersed in the polypropylene fibers. The pigments are stable, non-toxic to the environment, and may be applied in non-aqueous dyeing to reduce waste water emitted by textile dyeing and printing industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...