Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2403061, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782371

ABSTRACT

Luminescent materials with narrowband emission have extraordinary significance for developing ultrahigh-definition display. B-N-containing multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are strong contenders. However, their device performances pervasively encounter detrimental aggregation-caused quenching effect that is highly vulnerable to doping concentration, complicating device fabrication. Therefore, constructing highly efficient and concentration-independent MR-TADF emitters is of pragmatic importance for improving device controllability and reproducibility, simplifying manufacturing procedures, and conserving production costs. Here, by systematic arrangement of donor triphenylamine and fluorophore BNCz on distinct bridges, a spatial confinement strategy has been developed with a donor-bridge-fluorophore architecture. Structurally fine modulation and progressive evolution to construct molecular entities with congested steric hindrance effect that can suppress intermolecular interactions without substantially affecting the luminescence tone of fluorophore BNCz, resulting in highly efficient and concentration-independent narrowband emitters; through isomer engineering, two isomers BN-PCz-TPA and TPA-PCz-BN with different crystal stacking patterns are synthesized by altering the connection mode between triphenylamine and BNCz. As a result, BN-PCz-TPA-based device showcases maximum external quantum efficiency (EQE) of 36.3% with narrow full-width at half-maximum of 27 nm at 10 wt% doping concentration. Even at 20 wt% doping concentration, the maximum EQE remains at 32.5% and the emission spectrum is almost unchanged.

2.
Neuropsychiatr Dis Treat ; 20: 765-775, 2024.
Article in English | MEDLINE | ID: mdl-38577632

ABSTRACT

Purpose: The SARS-CoV-2 infection cases are increasing rapidly in neuro-intensive care units (neuro-ICUs) at the beginning of 2023 in China. We aimed to characterize the prevalence, risk factors, and prognosis of critically ill patients treated in neuro-ICUs. Materials and Methods: In the prospective, multicenter, observational registry study, critically ill patients with intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), and traumatic brain injury (TBI) admitted to eight Chinese neuro-ICUs between Feb 16, 2023, to Apr 30, 2023 were enrolled for the study. Mortality and ICU stay day were used as the primary outcomes. Results: 131 patients were finally included and analyzed (mean age 60.36 years [SD 13.81], 64.12% male, 39.69% SARS-CoV-2 infected). The mortality is higher in the SARS-CoV-2 infection group without statistical signification (7.69% vs 5.06%, p>0.05). The length of stay (LOS) in neuro-ICUs was significantly longer among the SARS-CoV-2 infection patients (7(1-12) vs 4(1-8), p<0.01), with increased viral pneumonia occurrence (58.54% vs 7.32%, p<0.01). SARS-CoV-2 infection, surgery, and low GCS scores were independent risk factors for prolonged LOS, and respiratory/renal failure were independent risk factors for death. Conclusion: Based on the present neuro-ICU cohort, SARS-CoV-2 infection was a significant risk for the prolonged LOS of neuro-critically ill patients. Trial Registration: Registered with Chictr.org.cn (ChiCTR2300068355) at 16 February 2023, Prospective registration. https://www.chictr.org.cn/showproj.html?proj=188252.

3.
Angew Chem Int Ed Engl ; 63(15): e202400661, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38333930

ABSTRACT

The racemization of chiral organic compounds is a common chemical phenomenon. However, it often poses configurational-stability issues to the application of this class of compounds. Achieving chiral organic compounds without the risk of racemization is fascinating, but it is challenging due to a lack of strategies. Here, we reveal the cove-regions bridging strategy for achieving persistently chiral multi-helicenes (incapable of racemization), based on the synthesized proof-of-concept double hetero[4]helicenes featuring macrocycle structures with a small 3D cavity. Additionally, we demonstrate that the strategy is also effective in tuning the electronic structures of multi-helicenes, resulting in a conversion from luminescence silence into thermally activated delayed fluorescence (TADF) for the present system. Furthermore, red circularly polarized TADF based on small double [4]helicene systems is achieved for the first time using this strategy. The disclosed cove-regions bridging strategy provides an opportunity to modulate the electronic structures and luminescent properties of multi-helicenes without concern for racemization, thus significantly enhancing the structural and property diversity of multi-helicenes for various applications.

4.
ACS Appl Mater Interfaces ; 16(4): 4948-4957, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38235687

ABSTRACT

The development of high-performance multiple resonance thermally activated delayed fluorescence (MR-TADF) materials with narrowband yellow emission is highly critical for various applications in industries, such as the automotive, aerospace, and microelectronic industries. However, the modular construction approaches to expeditiously access narrowband yellow-emitting materials is relatively rare. Here, a unique molecular design concept based on frontier molecular orbital engineering (FMOE) of aromatic donor fusion is proposed to strategically address this issue. Donor fusion is a modular approach with a "leveraging effect"; through direct polycyclization of donor attached to the MR parent core, it is facile to achieve red-shifted emission by a large margin. As a result, two representative model molecules, namely BN-Cz and BN-Cb, have been constructed successfully. The BN-Cz- and BN-Cb-based sensitized organic light-emitting diodes (OLEDs) exhibit bright yellow emission with peaks of 560 and 556 nm, full-width at half-maxima (fwhm's) of 49 and 45 nm, Commission Internationale de L'Eclairage coordinates of (0.44, 0.55) and (0.43, 0.56), and maximum external quantum efficiencies (EQEs) of 32.9% and 29.7%, respectively. The excellent optoelectronic performances render BN-Cz and BN-Cb one of the most outstanding yellow-emitting MR-TADF materials.

5.
Angew Chem Int Ed Engl ; 62(52): e202312451, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37724466

ABSTRACT

It is of great strategic significance to develop highly efficient narrowband organic electroluminescent materials that can be utilized to manufacture ultra-high-definition (UHD) displays and meet or approach the requirements of Broadcast Television 2020 (B.T.2020) color gamut standards. This motif poses challenges for molecular design and synthesis, especially for developing generality, diversity, scalability, and robustness of molecular structures. The emergence of multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters has ingeniously solved the problems and demonstrated bright application prospects in the field of UHD displays, sparking a research boom. This Minireview summarizes the research endeavors of narrowband organic electroluminescent materials, with emphasis on the tremendous contribution of frontier molecular orbital engineering (FMOE) strategy. It combines the outstanding advantages of MR framework and donor-acceptor (D-A) structure, and can achieve red-shift and narrowband emission simultaneously, which is of great significance in the development of long-wavelength narrowband emitters with emission maxima especially exceeding 500 nm. We hope that this Minireview would provide some inspiration for what could transpire in the future.

6.
Adv Mater ; 35(42): e2305125, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37461260

ABSTRACT

Advanced circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials synergize the advantages of circularly polarized luminescence (CPL), narrowband emission, and the TADF characteristic, which can be fabricated into highly efficient circularly polarized organic light-emitting diodes (CP-OLEDs) with high color purity, directly facing the urgent market strategic demand of ultrahigh-definition and 3D displays. In this work, based on an edge-topology molecular-engineering (ETME) strategy, a pair of high-performance CP-MR-TADF enantiomers, (P and M)-BN-Py, is developed, which merges the intrinsically helical chirality into the MR framework. The optimized CP-OLEDs with (P and M)-BN-Py emitters and the newly developed ambipolar transport host PhCbBCz exhibit pure green emission with sharp peaks of 532 nm, full-width at half-maximum (FWHM) of 37 nm, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.29, 0.68). Importantly, they achieve remarkable maximum external quantum efficiencies (EQEs) of 30.6% and 29.2%, and clear circularly polarized electroluminescence (CPEL) signals with electroluminescence dissymmetry factors (gEL s) of -4.37 × 10-4 and +4.35 × 10-4 for (P)-BN-Py and (M)-BN-Py, respectively.

7.
Angew Chem Int Ed Engl ; 62(19): e202301930, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36898967

ABSTRACT

Advanced multiple resonance induced thermally activated delayed fluorescence (MR-TADF) emitters have emerged as a privileged motif for applications in organic light-emitting diodes (OLEDs), because they furnish highly tunable TADF characteristics and high color purity emission. Herein, based on the unique nitrogen-atom embedding molecular engineering (NEME) strategy, a series of compounds BN-TP-Nx (x=1, 2, 3, 4) have been customized. The nitrogen-atom anchored at different position of triphenylene hexagonal lattice entails varying degrees of perturbation to the electronic structure. The newly-constructed emitters have demonstrated the precise regulation of emission maxima of MR-TADF emitters to meet the actual industrial demand, and further enormously enriched the MR-TADF molecular reservoir. The BN-TP-N3-based OLED exhibits ultrapure green emission, with peak of 524 nm, full-width at half-maximum (FWHM) of 33 nm, Commission Internationale de L'Eclairage (CIE) coordinates of (0.23, 0.71), and maximum external quantum efficiency (EQE) of 37.3 %.

8.
Adv Mater ; 35(3): e2205166, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36325646

ABSTRACT

It is of important strategic significance to develop high-efficiency narrowband organic electroluminescent materials that can be employed to fabricate ultrahigh-definition displays with wide color gamut. This topic implies a great challenge to molecular design and synthesis, especially for the development of universality, diversity, scalability, and robustness of molecular architectonics. In this work, a synthetic methodology is demonstrated for functionalizing brominated BN-containing multiple-resonance (MR) frameworks with multifarious functional groups, such as donors, acceptors, and moieties without obvious push-pull electron properties. The m-DPAcP-BNCz-based organic light-emitting diode (OLED) exhibits green emission with a full-width at half-maximum (FWHM) of 28 nm and a maximum external quantum efficiency (EQE) of 40.6%. The outstanding performance of m-DPAcP-BNCz is attributed to the perfect integration of the inherent advantages of the MR framework and the donor-acceptor configuration, which can not only achieve bathochromic shift and narrowband emission, but also obtain high photoluminescence (PL) quantum yield (ΦPL ) and horizontal emitting dipole orientation ratio (Θ// ). This straightforward and efficient approach provides insightful guidance for the construction and enrichment of more high-efficiency narrowband emitters.

9.
Angew Chem Int Ed Engl ; 62(7): e202216473, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36511099

ABSTRACT

Developing solution-processable red organic light-emitting diodes (OLEDs) with high color purity and efficiency based on multiple resonance thermally activated delayed fluorescence (MR-TADF) is a formidable challenge. Herein, by introducing auxiliary electron donor and acceptor moieties into the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) distributed positions of multiple resonance skeleton simultaneously, an effective strategy to obtain red MR-TADF emitters was represented. The proof-of-the-concept molecule BN-R exhibits a narrowband pure-red emission at 624 nm, with a high luminous efficiency of 94 % and a narrow bandwidth of 46 nm. Notably, the fabricated solution-processable pure-red OLED based on BN-R exhibits a state-of-the-art external quantum efficiency over 20 % with the Commission Internationale de I'Éclairage coordinates of (0.663, 0.337) and a long operational lifetime (LT50 ) of 1088 hours at an initial luminance of 1000 cd m-2 .

10.
Chemistry ; 29(12): e202203414, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36585378

ABSTRACT

Circularly polarized luminescence (CPL) materials that concurrently exhibit high efficiency and narrowband emission are extremely promising applications in 3D and wide color gamut display. By merging the CPL optical property and multiple resonance (MR) induced thermally activated delayed fluorescence (TADF) characteristic into one molecule, a new strategy, namely CP-MR-TADF, is proposed to generate organic emitters with CPL activity, TADF and narrowband emission. High-performance red, green and blue CP-MR-TADF emitters have been developed following this strategy. Herein, the present status and progress of CP-MR-TADF materials in the field of organic light-emitting diodes (OLEDs) is summarized. Finally, for this rapidly growing new research field, the future opportunities are forecasted and the present challenges are discussed.

11.
ACS Appl Mater Interfaces ; 14(42): 47971-47980, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36219720

ABSTRACT

Nowadays, thermally activated delayed fluorescence (TADF) compounds with a fused-ring core skeleton are getting increasing research interest because of their use in high-performance organic light-emitting diodes (OLEDs). In this study, TADF compounds featuring a D-A-type fused-ring core skeleton are developed. The challenging compatibility of a planarized D-A arrangement and the TADF property is achieved through linking the D and A moieties with two oxygen atoms within a six-membered ring. Compared with a single-oxygen analogue possessing a flexible skeleton and a twisted D-A arrangement, these fused-ring compounds with higher skeleton rigidity show higher photoluminescence quantum yields and narrower emission spectra in toluene and in doped thin films. Their electroluminescent devices achieve high external quantum efficiencies (up to 19.4%), suggesting the potential of rarely achieved D-A-type fused-ring TADF systems to serve as high-performance emitters of OLEDs.

12.
Angew Chem Int Ed Engl ; 61(30): e202204652, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35521824

ABSTRACT

Multiple resonance thermally activated delayed fluorescence (MR-TADF) compounds have set off an upsurge of research because of their tremendous application prospects in the field of wide color gamut display. Herein, we propose a novel MR-TADF molecular construction paradigm based on polycyclization of the multiple resonance parent core, and construct a representative multiple resonance polycyclic aromatic hydrocarbon (MR-PAH) based on the para-alignment of boron and nitrogen atoms into a six-membered ring (p-BNR). Through the retrosynthesis analysis, a concise synthesis strategy with wide applicability has been proposed, encompassing programmed sequential boron esterification, Suzuki coupling and Scholl oxidative coupling. The target model molecule BN-TP shows green fluorescence with an emission peak at 523 nm and a narrow full-width at half-maximum (FWHM) of 34 nm. The organic light-emitting diode (OLED) employing BN-TP as an emitter exhibits ultrapure green emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.26, 0.70), and achieves a maximum external quantum efficiency (EQE) of 35.1 %.

13.
Adv Mater ; 33(21): e2100652, 2021 May.
Article in English | MEDLINE | ID: mdl-33864284

ABSTRACT

Purely organic fluorescent materials that concurrently exhibit high efficiency, narrowband emission, and circularly polarized luminescence (CPL) remain an unaddressed issue despite their promising applications in wide color gamut- and 3D-display. Herein, the CPL optical property and multiple resonance (MR) effect induced thermally activated delayed fluorescence (MR-TADF) emission are integrated with high color purity and luminous efficiency together. Two pairs of highly efficient green CP-MR-TADF enantiomers, namely, (R/S)-OBN-2CN-BN and (R/S)-OBN-4CN-BN, are developed. The enantiomer-based organic light-emitting diodes (OLEDs) exhibit pure green emission with narrow full-width at half-maximums (FWHMs) of 30 and 33 nm, high maximum external quantum efficiencies (EQEs) of 29.4% and 24.5%, and clear circularly polarized electroluminescence (CPEL) signals with electroluminescence dissymmetry factors (gEL ) of +1.43 × 10-3 /-1.27 × 10-3 and +4.60 × 10-4 /-4.76 × 10-4 , respectively. This is the first example of a highly efficient OLED that exhibits CPEL signal, narrowband emission, and TADF concurrently.

14.
Angew Chem Int Ed Engl ; 60(28): 15335-15339, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33904242

ABSTRACT

Pure organic room-temperature phosphorescence (RTP) materials are considered as potential candidates for replacing precious metal complexes to fabricate highly efficient organic light-emitting devices (OLEDs). However, applications of the reported RTP materials in OLEDs are seriously impeded by their low photoluminescence quantum yields (PLQYs) in a thin film state. To overcome these obstacles, we established a new strategy to construct highly efficient OLEDs based on a pure organic RTP material sensitized fluorescence emitter by selecting benzimidazole-triazine molecules (PIM-TRZ), 2,6-di(phenothiazinyl)naphthalene (ß-DPTZN), and 5,6,11,12-tetraphenylnaphthacene (rubrene) as host, phosphor sensitizer, and fluorescent emitter, respectively. The perfect combination of host, phosphorescent sensitizer, and fluorescent emitter in the emitting layer ensure the outstanding performance of the devices with an external quantum efficiency (EQE) of 15.7 %.

15.
Chempluschem ; 86(1): 95-102, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33394570

ABSTRACT

The π-conjugation of molecules has a large influence on their excited state properties, especially for red thermally activated delayed fluorescence (TADF) materials. Two orange-red TADF compounds comprising dual dicyano-substituted pyrazine/quinoxaline acceptors have been designed and synthesized. TPA-2DCNQ (3,3'-((phenylazanediyl)bis(4,1-phenylene))bis(2-phenylquinoxaline-6,7-dicarbonitrile) with extended π-conjugated quinoxaline as the acceptor exhibits higher photoluminescence quantum yields (ca. 0.67-0.71) in doped films. A smaller energy splitting (ΔEst ) between the first singlet excited state and triplet excited state is also achieved, indicating that extending the π-conjugation of the acceptor rationally is an effective approach to designing highly efficient long-wavelength TADF materials. Devices with TPA-2DCNQ as the emitter display maximum external quantum efficiencies (EQEs) of 12.6-14.0 %, which are more than twice those of devices containing TPA-2DCNPZ (6,6'-((phenylazanediyl)bis(4,1-phenylene))bis(5-phenylpyrazine-2,3-dicarbonitrile).

16.
Angew Chem Int Ed Engl ; 59(40): 17442-17446, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32533603

ABSTRACT

The design and synthesis of organic materials with a narrow emission band in the longer wavelength region beyond 510 nm remain a great challenge. For constructing narrowband green emitters, we propose a unique molecular design strategy based on frontier molecular orbital engineering (FMOE), which can integrate the advantages of a twisted donor-acceptor (D-A) structure and a multiple resonance (MR) delayed fluorescence skeleton. Attaching an auxiliary donor to a MR skeleton leads to a novel molecule with twisted D-A and MR structure characteristics. Importantly, a remarkable red-shift of the emission maximum and a narrowband spectrum are achieved simultaneously. The target molecule has been employed as an emitter to fabricate green organic light-emitting diodes (OLEDs) with Commission Internationale de L'Eclairage (CIE) coordinates of (0.23, 0.69) and a maximum external quantum efficiency (EQE) of 27.0 %.

17.
J Phys Chem Lett ; 10(19): 5983-5988, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31537062

ABSTRACT

A pure organic molecule 2,6-di(phenothiazinyl)naphthalene (DPTZN) with room-temperature phosphorescence (RTP) features was developed. Remarkably, a triazine-benzimidazole-based molecule TRZ-BIM can significantly improve the RTP efficiency of DPTZN in DPTZN:TRZ-BIM blend films. The photoluminescence quantum yield (PLQY) of 10 wt % DPTZN:TRZ-BIM blend film is 38%. The RTP property of DPTZN:TRZ-BIM blend films was characterized by steady, time-resolved, and temperature-dependent emission spectra. An organic light-emitting diode (OLED) with 10 wt % DPTZN:TRZ-BIM blend film as the emitting layer showed a high maximum external quantum efficiency of 11.5%, current efficiency of 33.8 cd A-1, and power efficiency of 32.6 lm W-1. Herein, we have developed an efficient approach to achieve precious-metal-free organic films that can be employed to fabricate high-performance phosphorescence OLEDs.

18.
ACS Appl Mater Interfaces ; 11(31): 28096-28105, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31290328

ABSTRACT

The design and synthesis of blue thermally activated delayed fluorescence (TADF) emitters that have high electroluminescence efficiency and low efficiency roll-off features remain a great challenge. Herein, we developed a facile and efficient strategy by shielding acceptors with carbazole units for constructing high-performance blue TADF emitters. Benzonitrile (BN), 9,9-diphenylacridan (DPAc), and carbazole (Cz) were adopted as the acceptor, donor, and protector, respectively, to build two TADF emitters named DPAc-DCzBN and DPAc-DtCzBN. The nondoped organic light-emitting diodes (OLEDs) of DPAc-DCzBN as the emitter exhibited a standard sky-blue emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.26), high external quantum efficiency (EQE) of 20.0%, and low efficiency roll-off (EQEs of 19.5, 16.1, and 12.6% at 100, 500, and 1000 cd m-2, respectively), which is an outstanding nondoped blue TADF OLED. The doped device of DPAc-DtCzBN displayed a pure blue emission and the corresponding CIE coordinates are (0.16, 0.15). Meanwhile, it also demonstrated high and stabilized EQE values of 23.1, 18.3, and 11.5% at maxima, 100 and 500 cd m-2, respectively, which is a quite high level among the pure blue TADF OLEDs. This study testifies the feasibility of our strategy in constructing high-performance TADF electroluminescent materials.

19.
J Phys Chem Lett ; 10(4): 842-847, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30734562

ABSTRACT

We propose a strategy to construct deep blue emission molecules based on the concept of nonsymmetrical connection of two identical π-conjugated groups. It was demonstrated that the nonsymmetrical connection strategy indeed resulted in the separation of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and the formation of a donor-acceptor (D-A) structure. For D-A molecules constructed by two identical groups, the degree of charge transfer is weaker and deep blue emission is easily achieved. Two D-A molecules (PIpPI and PImPI) were synthesized by employing diphenyl-phenanthroimidazole (PI) as a building block. The nonsymmetric connection of PI groups endows these molecules with a D-A feature that can result in a bipolar transport property. The nondoped organic light-emitting diodes with PIpPI and PImPI as emitter exhibit deep-blue emission and maximum external quantum efficiencies of 8.84% and 6.83%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...