Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Article in English | MEDLINE | ID: mdl-38721707

ABSTRACT

BACKGROUND: While it has been hypothesized that high plaque stress and strain may be related to plaque rupture, its direct verification using in vivo coronary plaque rupture data and full 3-dimensional fluid-structure interaction models is lacking in the current literature due to difficulty in obtaining in vivo plaque rupture imaging data from patients with acute coronary syndrome. This case-control study aims to use high-resolution optical coherence tomography-verified in vivo plaque rupture data and 3-dimensional fluid-structure interaction models to seek direct evidence for the high plaque stress/strain hypothesis. METHODS: In vivo coronary plaque optical coherence tomography data (5 ruptured plaques, 5 no-rupture plaques) were acquired from patients using a protocol approved by the local institutional review board with informed consent obtained. The ruptured caps were reconstructed to their prerupture morphology using neighboring plaque cap and vessel geometries. Optical coherence tomography-based 3-dimensional fluid-structure interaction models were constructed to obtain plaque stress, strain, and flow shear stress data for comparative analysis. The rank-sum test in the nonparametric test was used for statistical analysis. RESULTS: Our results showed that the average maximum cap stress and strain values of ruptured plaques were 142% (457.70 versus 189.22 kPa; P=0.0278) and 48% (0.2267 versus 0.1527 kPa; P=0.0476) higher than that for no-rupture plaques, respectively. The mean values of maximum flow shear stresses for ruptured and no-rupture plaques were 145.02 dyn/cm2 and 81.92 dyn/cm2 (P=0.1111), respectively. However, the flow shear stress difference was not statistically significant. CONCLUSIONS: This preliminary case-control study showed that the ruptured plaque group had higher mean maximum stress and strain values. Due to our small study size, larger scale studies are needed to further validate our findings.

2.
Circ J ; 87(11): 1625-1632, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37407487

ABSTRACT

BACKGROUND: Microvascular reperfusion following percutaneous coronary intervention (PCI) is associated with the prognosis of patients with ST-segment elevation myocardial infarction (STEMI). We investigated how plaque characteristics detected by optical coherence tomography (OCT) in STEMI patients affect the status of the microcirculation during PCI.Methods and Results: This retrospective, single-center study was a post hoc analysis basedon the multicenter SALVAGE randomized control trial (NCT03581513) that enrolled 629 STEMI patients, and finally we enrolled 235 patients who underwent PCI and pre-intervention OCT. Microvascular perfusion was evaluated using the Thrombolysis in Myocardial Infarction (TIMI) myocardial perfusion frame count (TMPFC). Patients were divided into 3 groups based on the change in TMPFC from before to after PCI: improving TMPFC (n=11; 4.7%), stable TMPFC (n=182; 77.4%), and worsening TMPFC group (n=42; 17.9%). The proportion of patients with a microcirculation dysfunction before reperfusion was 11.9%, which increased significantly by (P=0.079) 8.5% to 20.4% after reperfusion. Compared with plaque characteristics in the stable and worsening TMPFC groups, the improving TMPFC group had fewer thrombi (90.7% and 90.5% vs. 89.4%, respectively; P=0.018), a lower proportion of plaque rupture (66.5% and 66.3% vs. 54.5%, respectively; P=0.029), and a lower proportion of lipid-rich plaques (89.6% and 88.1% vs. 63.6%, respectively; P=0.036). CONCLUSIONS: PCI may not always achieve complete myocardial reperfusion. Thrombi, plaque rupture, and lipid-rich plaques detected by OCT can indicate microcirculation dysfunction during the reperfusion period.


Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , Plaque, Atherosclerotic , ST Elevation Myocardial Infarction , Humans , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/therapy , Retrospective Studies , Tomography, Optical Coherence , Coronary Angiography , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/therapy , Myocardial Infarction/pathology , Plaque, Atherosclerotic/diagnostic imaging , Lipids , Treatment Outcome
3.
Am Heart J ; 263: 159-168, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37327980

ABSTRACT

BACKGROUND: Plaque rupture (PR) and plaque erosion (PE) are 2 distinct, different, and most common culprit lesion morphologies responsible for acute coronary syndrome (ACS). However, the prevalence, distribution, and characteristics of peripheral atherosclerosis in ACS patients with PR vs PE has never been studied. The aim of this study was to assess peripheral atherosclerosis burden and vulnerability evaluated by vascular ultrasound in ACS patients with coronary PR vs PE identified by optical coherence tomography (OCT). METHODS: Between October 2018 and December 2019, 297 ACS patients who underwent preintervention OCT examination of the culprit coronary artery were enrolled. Peripheral ultrasound examinations of carotid, femoral, and popliteal arteries were performed before discharge. RESULTS: Overall, 265 of 297 (89.2%) patients had at least one atherosclerotic plaque in a peripheral arterial bed. Compared with coronary PE, patients with coronary PR had a higher prevalence of peripheral atherosclerotic plaques (93.4% vs 79.1%, P < .001), regardless of location: carotid, femoral, or popliteal arteries. The number of peripheral plaques per patient was significantly larger in the coronary PR group than coronary PE (4 [2-7] vs 2 [1-5], P < .001). Additionally, there was a greater prevalence of peripheral vulnerable characteristics including plaque surface irregularity, heterogeneous plaque, and calcification in patients with coronary PR vs PE. CONCLUSIONS: Peripheral atherosclerosis exists commonly in patients presenting with ACS. Patients with coronary PR had greater peripheral atherosclerosis burden and more peripheral vulnerability compared to those with coronary PE, suggesting that comprehensive evaluation of peripheral atherosclerosis and multidisciplinary cooperative management maybe necessary, especially in patients with PR. TRIAL REGISTRATION: clinicaltrials.gov (NCT03971864).

4.
Atherosclerosis ; 378: 117118, 2023 08.
Article in English | MEDLINE | ID: mdl-37127496

ABSTRACT

BACKGROUND AND AIMS: The prevalence of acute coronary syndrome (ACS) patients with cancer history is increasing and it is associated with higher mortality. However, there is limited evidence on the characteristics of coronary plaque in ACS patients with cancer history. This study explored the pancoronary plaque characteristics in ACS patients with cancer history by optical coherence tomography (OCT). METHODS: A total of 306 ACS patients treated by 3-vessel OCT at the time of percutaneous coronary intervention (PCI) were included, retrospectively. Patients were divided into two groups according to the presence or absence of cancer history: one group with cancer history (n = 98) and a matched group without cancer history (n = 208). RESULTS: A total of 314 culprit lesions and 514 nonculprit lesions were identified by OCT in this study. In culprit lesions, ACS patients with cancer history had higher incidence of thin cap fibroatheroma (TCFA) (p = 0.016), cholesterol crystals (p = 0.028), calcification (p = 0.001) and thrombus (p = 0.001), and had thinner fibrous cap thickness (FCT) (p = 0.011), greater maximum lipid arc (p = 0.042) and lipid index (p < 0.001), compared to matched ACS patients without cancer history. In nonculprit lesions, ACS patients with cancer history had higher prevalence of high-risk plaque (14.7% vs. 7.7%, p = 0.017), nonculprit rupture (14.7% vs. 6.3%, p = 0.003), and TCFA (52.2% vs. 28.3%, p < 0.001), and had higher incidence of calcification (p = 0.003), thrombus (p = 0.029), cholesterol crystals (p = 0.002) and microchannels (p = 0.029). These non-culprit lesions had longer lesion length (p = 0.001), thinner FCT (p < 0.001), greater maximum lipid arc (p = 0.016) and lipid index (p < 0.001). CONCLUSIONS: ACS patients with cancer history showed more high-risk plaque features in culprit and nonculprit lesions, compared with ACS patients without cancer history. Therefore, ACS patients with cancer history may have greater pancoronary vulnerability. This may predict a poorer prognosis for ACS patients with cancer history.


Subject(s)
Acute Coronary Syndrome , Coronary Artery Disease , Neoplasms , Percutaneous Coronary Intervention , Plaque, Atherosclerotic , Thrombosis , Humans , Plaque, Atherosclerotic/pathology , Acute Coronary Syndrome/complications , Acute Coronary Syndrome/diagnostic imaging , Acute Coronary Syndrome/epidemiology , Retrospective Studies , Fibrosis , Neoplasms/complications , Neoplasms/epidemiology , Neoplasms/pathology , Thrombosis/pathology , Cholesterol , Lipids , Tomography, Optical Coherence/methods , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Coronary Angiography , Coronary Artery Disease/pathology
7.
JACC Cardiovasc Imaging ; 16(4): 521-532, 2023 04.
Article in English | MEDLINE | ID: mdl-36648054

ABSTRACT

BACKGROUND: Myocardial infarction with nonobstructive coronary artery (MINOCA) is a heterogeneous syndrome caused by different pathophysiologic mechanisms. There is limited evidence regarding prognosis of patients with MINOCA caused by different mechanisms. OBJECTIVES: The present study aimed to assess the underlying mechanisms of MINOCA by optical coherence tomography (OCT) and to correlate with clinical outcomes. METHODS: Patients with MINOCA were divided into 2 groups based on OCT findings: atherosclerotic MINOCA (Ath-MINOCA) and nonatherosclerotic MINOCA (non-Ath-MINOCA). Major adverse cardiac events (MACE) were defined as cardiac death, nonfatal MI, target lesion revascularization, stroke, and rehospitalization for unstable or progressive angina. RESULTS: Among 7,423 patients with a clinical diagnosis of MI who underwent angiography, 190 of 294 MINOCA were studied using OCT. The causes of Ath-MINOCA (n = 99, 52.1%) were plaque erosion (n = 64, 33.7%), plaque rupture (n = 33, 17.4%), and calcified nodule (n = 2, 1.1%) whereas the causes of non-Ath-MINOCA (n = 91, 47.9%) were spontaneous coronary artery dissection (n = 8, 4.2%), coronary spasm (n = 9, 4.7%), and unclassified cause (n = 74, 38.9%). The 1-year MACE was 15.3% for Ath-MINOCA vs 4.5% for non-Ath-MINOCA (P = 0.015). An atherosclerotic cause was an independent predictor of MACE (HR: 5.36 [95% CI: 1.08-26.55]; P = 0.040), mainly driven by target lesion revascularization and rehospitalization, despite the composite endpoint including cardiac death and MI showing no difference. CONCLUSIONS: OCT identified a cause in 61.1% of MINOCA, in which Ath-MINOCA represents an important and distinct MINOCA subset. Ath-MINOCA were more common and associated with worse outcomes. (Incidence Rate of Heart Failure After Acute Myocardial Infarction With Optimal Treatment; NCT03297164; Paradigm Shift in the Treatment of Patients With ACS; NCT02041650).


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Humans , MINOCA , Tomography, Optical Coherence/adverse effects , Coronary Angiography/adverse effects , Predictive Value of Tests , Myocardial Infarction/etiology , Prognosis , Death , Coronary Vessels/pathology , Risk Factors , Coronary Artery Disease/pathology
8.
JACC Cardiovasc Interv ; 15(8): 846-856, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35367176

ABSTRACT

OBJECTIVES: The aim of this study was to test whether optical coherence tomographic (OCT) guidance would provide additional useful information beyond that obtained by angiography and lead to a shift in reperfusion strategy and improved clinical outcomes in patients with ST-segment elevation myocardial infarction (STEMI) with early infarct artery patency. BACKGROUND: Angiography is limited in assessing the underlying pathophysiological mechanisms of the culprit lesion. METHODS: EROSION III (Optical Coherence Tomography-Guided Reperfusion in ST-Segment Elevation Myocardial Infarction With Early Infarct Artery Patency) is an open-label, prospective, multicenter, randomized, controlled study approved by the ethics committees of participating centers. Patients with STEMI who had angiographic diameter stenosis ≤ 70% and TIMI (Thrombolysis In Myocardial Infarction) flow grade 3 at presentation or after antegrade blood flow restoration were recruited and randomized to either OCT guidance or angiographic guidance. The primary efficacy endpoint was the rate of stent implantation. RESULTS: Among 246 randomized patients, 226 (91.9%) constituted the per protocol set (112 with OCT guidance and 114 with angiographic guidance). The median diameter stenosis was 54.0% (IQR: 48.0%-61.0%) in the OCT guidance group and 53.5% (IQR: 43.8%-64.0%) in the angiographic guidance group (P = 0.57) before randomization. Stent implantation was performed in 49 of 112 patients (43.8%) in the OCT group and 67 of 114 patients (58.8%) in the angiographic group (P = 0.024), demonstrating a 15% reduction in stent implantation with OCT guidance. In patients treated with stent implantation, OCT guidance was associated with a favorable result with lower residual angiographic diameter stenosis (8.7% ± 3.7% vs 11.8% ± 4.6% in the angiographic guidance group; P < 0.001). Two patients (1 cardiac death, 1 stable angina) met the primary safety endpoint in the OCT guidance group, as did 3 patients (3 cardiac deaths) in the angiographic guidance group (1.8% vs 2.6%; P = 0.67). Reinfarction was not observed in either group. At 1 year, the rates of predefined cardiocerebrovascular events were comparable between the groups (11.6% after OCT guidance vs 9.6% after angiographic guidance; P = 0.66). CONCLUSIONS: In patients with STEMI with early infarct artery patency, OCT guidance compared with angiographic guidance of reperfusion was associated with less stent implantation during primary percutaneous coronary intervention. These favorable results indicate the value of OCT imaging in optimizing the reperfusion strategy of patients with STEMI. (EROSION III: OCT- vs Angio-Based Reperfusion Strategy for STEMI; NCT03571269).


Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Arteries , Constriction, Pathologic/etiology , Coronary Angiography/methods , Humans , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/etiology , Myocardial Infarction/therapy , Percutaneous Coronary Intervention/methods , Prospective Studies , Reperfusion , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/etiology , ST Elevation Myocardial Infarction/therapy , Tomography, Optical Coherence/methods , Treatment Outcome
9.
BMC Cardiovasc Disord ; 22(1): 103, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35287572

ABSTRACT

BACKGROUND: Calcified plaque is thought to adversely impact outcomes after percutaneous coronary intervention (PCI). This study sought to evaluate the impact of nodular calcification in patients with acute coronary syndrome treated with primary percutaneous coronary intervention. METHODS: Using optical coherence tomography (OCT), 500 culprit plaques with calcification were analyzed from 495 acute coronary syndrome (ACS) patients on whom PCI was performed. Based on morphology, we classified calcification into two subtypes: nodular calcification and non-nodular calcification. Nodular calcification was defined as protruding mass with an irregular surface, high backscattering, and signal attenuation while non-nodular calcification was defined as an area with low backscattering heterogeneous region with a well-delineated border without protrusion into the lumen on OCT. RESULTS: Calcified culprit plaques were divided into nodular calcification group (n = 238) and non-nodular calcification group (n = 262). Patients with nodular calcification were older (p < 0.001) and had lower left ventricular ejection fraction (p = 0.006) compared to patients with non-nodular calcification. Minimum stent area (5.0 (3.9, 6.3) mm2 vs. 5.4 (4.2, 6.7) mm2, p = 0.011) and stent expansion (70 (62.7, 81.8) % vs. 75 (65.2, 86.6) %, p = 0.004) were significantly smaller in the nodular calcification group than in the non-nodular calcification group. Stent under-expansion was most frequent (p = 0.003) in the nodular calcification group. CONCLUSION: This study demonstrate that the presence of nodular calcification is associated with a smaller minimum stent area and a higher incidence of stent under-expansion. Lesions with nodular calcification may be at risk of stent under-expansion.


Subject(s)
Acute Coronary Syndrome , Coronary Artery Disease , Percutaneous Coronary Intervention , Plaque, Atherosclerotic , Vascular Calcification , Acute Coronary Syndrome/diagnostic imaging , Acute Coronary Syndrome/epidemiology , Acute Coronary Syndrome/therapy , Coronary Angiography/methods , Coronary Artery Disease/therapy , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Humans , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Stents , Stroke Volume , Tomography, Optical Coherence/methods , Vascular Calcification/diagnostic imaging , Vascular Calcification/epidemiology , Vascular Calcification/therapy , Ventricular Function, Left
10.
Catheter Cardiovasc Interv ; 97 Suppl 2: 1097-1107, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33864710

ABSTRACT

OBJECTIVES: This study aimed to compare the effect of atorvastatin 60 (AT60) mg to that of rosuvastatin 10 (RT10) mg on the morphological changes in lipid-rich plaques (LRPs) and plaque volume, using serial optical coherence tomography (OCT) and intravascular ultrasound imaging (IVUS). BACKGROUND: Intensive lipid lowering therapy by statin provides more clinical benefit compared to that of moderate lipid lowering therapy. METHODS: Fifty patients who underwent OCT and IVUS at baseline, 6, and 12 months were grouped by statin therapy into the AT60 mg (n = 27) and RT10 mg (n = 23) groups. The relationships between absolute and percentage changes in biomarkers and fibrous cap thickness (FCT) during follow-up were investigated using a simple regression analysis. RESULTS: At 6 months, the mean low-density lipoprotein cholesterol level reduced from 113.5 to 65.5 mg/dl (AT60 mg group) and 100.2 to 72.2 mg/dl (RT10 mg groups). A continuous increase in FCT from baseline to 12 months was observed in both groups (p < .001, p < .001, respectively). Mean lipid arc significantly decreased in both AT60 mg (189.0 ± 55.9°, 170.9 ± 60.2°, 155.6 ± 50.6°, p < .001) and RT10 mg (160.0 ± 45.6°, 151.2 ± 48.5°, 141.1 ± 52.9°, p = .010) groups. Plaque burden did not change significantly in both groups. CONCLUSIONS: Lipid-lowering therapy effect with AT60 mg was equivalent to that of RT10 mg in terms of change in plaque morphology. AT60 mg showed more intensive low-density lipid cholesterol level reduction compared to RT10 mg while RT10 mg was effective in increasing the high-density lipid cholesterol level. Both statin therapies could effectively stabilize LRPs.


Subject(s)
Coronary Artery Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Plaque, Atherosclerotic , Atorvastatin , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/drug therapy , Humans , Lipids , Plaque, Atherosclerotic/drug therapy , Rosuvastatin Calcium , Tomography, Optical Coherence , Treatment Outcome , Ultrasonography, Interventional
12.
EuroIntervention ; 17(6): 497-505, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-33164894

ABSTRACT

BACKGROUND: The EROSION study demonstrated that patients with an acute coronary syndrome (ACS) caused by plaque erosion could be treated with antithrombotic therapy without stenting. However, the long-term prognosis of this strategy is still unclear. AIMS: The aim of this study was to test whether a non-stenting antithrombotic strategy was still effective at four-year follow-up and to explore potential predictors of long-term prognosis. METHODS: This study was a long-term follow-up of the EROSION study. Follow-up was conducted by phone call or clinical visit. Patients were divided into two groups - those with target lesion revascularisation (the TLR group), and the non-TLR group. RESULTS: Out of 55 patients who completed one-month follow-up, 52 patients finished four-year follow-up. The median duration was 4.8 years (range, 4.2-5.8 years). The majority of patients remained free from events, and all patients were free from hard endpoints (death, myocardial infarction, stroke, bypass surgery, or heart failure). Only one patient had gastrointestinal bleeding, and 11 patients underwent TLR. Patients in the non-TLR group had more optical coherence tomography (OCT) thrombus reduction from baseline to one month; 95% of patients in the non-TLR group versus 45% in the TLR group (p=0.001) met the primary endpoint (thrombus volume reduction >50%). Angiographic results showed that the TLR group had less improvement in diameter stenosis (p=0.014) at one month compared with the non-TLR group. CONCLUSIONS: Four-year follow-up findings reconfirmed the safety of an antithrombotic therapy without stenting for ACS caused by erosion. Patients with better response to antithrombotic therapy in the first month were less likely to require stent implantation during the next four years.


Subject(s)
Acute Coronary Syndrome , Plaque, Atherosclerotic , Acute Coronary Syndrome/therapy , Coronary Angiography , Humans , Plaque, Atherosclerotic/diagnostic imaging , Stents , Tomography, Optical Coherence , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...