Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Chaos ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558041

ABSTRACT

Hypersynchronous (HYP) seizure onset is one of the frequently observed seizure-onset patterns in temporal lobe epileptic animals and patients, often accompanied by hippocampal sclerosis. However, the exact mechanisms and ion dynamics of the transition to HYP seizures remain unclear. Transcranial magneto-acoustic stimulation (TMAS) has recently been proposed as a novel non-invasive brain therapy method to modulate neurological disorders. Therefore, we propose a biophysical computational hippocampal network model to explore the evolution of HYP seizure caused by changes in crucial physiological parameters and design an effective TMAS strategy to modulate HYP seizure onset. We find that the cooperative effects of abnormal glial uptake strength of potassium and excessive bath potassium concentration could produce multiple discharge patterns and result in transitions from the normal state to the HYP seizure state and ultimately to the depolarization block state. Moreover, we find that the pyramidal neuron and the PV+ interneuron in HYP seizure-onset state exhibit saddle-node-on-invariant-circle/saddle homoclinic (SH) and saddle-node/SH at onset/offset bifurcation pairs, respectively. Furthermore, the response of neuronal activities to TMAS of different ultrasonic waveforms revealed that lower sine wave stimulation can increase the latency of HYP seizures and even completely suppress seizures. More importantly, we propose an ultrasonic parameter area that not only effectively regulates epileptic rhythms but also is within the safety limits of ultrasound neuromodulation therapy. Our results may offer a more comprehensive understanding of the mechanisms of HYP seizure and provide a theoretical basis for the application of TMAS in treating specific types of seizures.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Animals , Humans , Epilepsy, Temporal Lobe/therapy , Electroencephalography/methods , Acoustic Stimulation/adverse effects , Seizures/therapy , Hippocampus , Epilepsy/complications , Potassium
2.
BMC Med Genomics ; 17(1): 52, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355637

ABSTRACT

BACKGROUND: Despite the advancements in heart failure(HF) research, the early diagnosis of HF continues to be a challenging issue in clinical practice. This study aims to investigate the genes related to myocardial fibrosis and conduction block, with the goal of developing a diagnostic model for early treatment of HF in patients. METHOD: The gene expression profiles of GSE57345, GSE16499, and GSE9128 were obtained from the Gene Expression Omnibus (GEO) database. After merging the expression profile data and adjusting for batch effects, differentially expressed genes (DEGs) associated with conduction block and myocardial fibrosis were identified. Gene Ontology (GO) resources, Kyoto Encyclopedia of Genes and Genomes (KEGG) resources, and gene set enrichment analysis (GSEA) were utilized for functional enrichment analysis. A protein-protein interaction network (PPI) was constructed using a string database. Potential key genes were selected based on the bioinformatics information mentioned above. SVM and LASSO were employed to identify hub genes and construct the module associated with HF. The mRNA levels of TAC mice and external datasets (GSE141910 and GSE59867) are utilized for validating the diagnostic model. Additionally, the study explores the relationship between the diagnostic model and immune cell infiltration. RESULTS: A total of 395 genes exhibiting differential expression were identified. Functional enrichment analysis revealed that these specific genes primarily participate in biological processes and pathways associated with the constituents of the extracellular matrix (ECM), immune system processes, and inflammatory responses. We identified a diagnostic model consisting of 16 hub genes, and its predictive performance was validated using external data sets and a transverse aortic coarctation (TAC) mouse model. In addition, we observed significant differences in mRNA expression of 7 genes in the TAC mouse model. Interestingly, our study also unveiled a correlation between these model genes and immune cell infiltration. CONCLUSIONS: We identified sixteen key genes associated with myocardial fibrosis and conduction block, as well as diagnostic models for heart failure. Our findings have significant implications for the intensive management of individuals with potential genetic variants associated with heart failure, especially in the context of advancing cell-targeted therapy for myocardial fibrosis.


Subject(s)
Heart Failure , Humans , Animals , Mice , Heart Failure/diagnosis , Heart Failure/genetics , Gene Expression Profiling , Computational Biology , Disease Models, Animal , Fibrosis , RNA, Messenger
3.
Brain Sci ; 13(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38137075

ABSTRACT

BACKGROUND: SPN-812 has been approved for attention-deficit/hyperactivity disorder (ADHD) treatment in children and adolescents. OBJECTIVE: We aimed to analyze the efficacy and safety of different doses of SPN-812 for ADHD pediatric patients of different ages, verify its clinical efficacy, and evaluate its safety. METHODS: Up until 30 August 2023, randomized controlled trials (RCTs) were searched in EMBASE, MEDLINE, the Cochrane Library, and clinicaltrials.gov to evaluate different doses of SPN-812 and a placebo. RESULTS: We pooled 1619 patients from five RCTs with a duration of 6-8 weeks. Patients (6-17 years old) in SPN-812 (100, 200, and 400 mg/d) groups were superior to the control group in all efficacy outcomes with lower attention-deficit/hyperactivity disorder rating scale-5 (ADHD-RS-5), Conners 3-parent short form composite T score (Conners 3-PS), Weiss functional impairment rating scale-parent (WFIRS-P), and increased clinical global impression-improvement (CGI-I) score (both p < 0.05). At the same time, only SPN-812 300 mg/d did not show a significantly high risk of the adverse events (AEs) such as somnolence and decreased appetite (p = 0.09). There was no significant difference between placebo and SPN-812 groups (100, 200, and 400 mg/d) in serious adverse events (SAEs) such as syncope. The subgroup analyses showed that, both in children and adolescents subgroups, SPN-812 showed better efficacy than the placebo. The two age subgroups showed a significantly higher risk of AEs and an insignificant risk of SAEs than the placebo. CONCLUSION: At present, SPN-812 (100, 200, and 400 mg/d) is superior to the corresponding control in efficacy measures. However, the safety problem cannot be ignored.

4.
Genomics ; 115(5): 110676, 2023 09.
Article in English | MEDLINE | ID: mdl-37406974

ABSTRACT

OBJECTIVE: Deleterious genetic variants comprise one cause of cardiac conotruncal defects (CTDs). Genes associated with CTDs are gradually being identified. In the present study, we aimed to explore the profile of genetic variants of CTD-associated genes in Chinese patients with non-syndromic CTDs. METHODS: Thirty-nine CTD-related genes were selected after reviewing published articles in NCBI, HGMD, OMIM, and HPO. In total, 605 patients with non-syndromic CTDs and 300 healthy controls, all of Han ethnicity, were recruited. High-throughput targeted sequencing was used to detect genetic variants in the protein-coding regions of genes. We performed rigorous variant-level filtrations to identify potentially damaging variants (Dvars) using prediction programs including CADD, SIFT, PolyPhen-2, and MutationTaster. RESULT: Dvars were detected in 66.7% (26/39) of the targeted CTD-associated genes. In total, 11.07% (67/605) of patients with non-syndromic CTDs were found to carry one or more Dvars in targeted CTD-associated genes. Dvars in FOXH1, TBX2, NFATC1, FOXC2, and FOXC1 were common in the CTD cohort (1.5% [9/605], 1.2% [7/605], 1.2% [7/605], 1% [6/605], and 0.5% [3/605], respectively). CONCLUSION: Targeted exon sequencing is a cost-effective approach for the genetic diagnosis of CTDs. Our findings contribute to an understanding of the genetic architecture of non-syndromic CTDs.


Subject(s)
East Asian People , Heart Defects, Congenital , Child , Humans , East Asian People/genetics , Ethnicity , Heart Defects, Congenital/genetics , Transcription Factors
5.
Front Genet ; 14: 1075349, 2023.
Article in English | MEDLINE | ID: mdl-36816019

ABSTRACT

Atrioventricular septal defect (AVSD) is a deleterious subtype of congenital heart diseases (CHD) characterized by atrioventricular canal defect. The pathogenic genetic changes of AVSD remain elusive, particularly for copy number variation (CNV), a large segment variation of the genome, which is one of the major forms of genetic variants resulting in congenital heart diseases. In the present study, we recruited 150 AVSD cases and 100 healthy subjects as controls for whole exome sequencing (WES). We identified total 4255 rare CNVs using exon Hidden Markov model (XHMM) and screened rare CNVs by eliminating common CNVs based on controls and Database of Genomic Variants (DGV). Each patient contained at least 9 CNVs, and the CNV burden was prominently presented in chromosomes 19,22,21&16. Small CNVs (<500 kb) were frequently observed. By leveraging gene-based burden test, we further identified 20 candidate AVSD-risk genes. Among them, DYRK1A, OBSCN and TTN were presented in the core disease network of CHD and highly and dynamically expressed in the heart during the development, which indicated they possessed the high potency to be AVSD-susceptible genes. These findings not only provided a roadmap for finally unveiling the genetic cause of AVSD, but also provided more resources and proofs for clinical genetics.

6.
Front Cardiovasc Med ; 9: 1048795, 2022.
Article in English | MEDLINE | ID: mdl-36465446

ABSTRACT

Objective: Coronary artery fistula, defined as communication between a coronary artery and a great vessel or a cardiac chamber, is a relatively rare anomaly with an estimated incidence of 0.002% in the general population. It could be combined with a giant coronary artery aneurysm, with an incidence of 5.9% of the total incidence rate of CAF in the general population. The pathogenesis of these two combined anomalies is not clear, and we aimed to detect whether genetic abnormalities underlie the pathogenesis of these rarely combined anomalies. Materials and methods: A 6-year-old patient with a diagnosis of the right coronary artery to right ventricle fistula combined with a giant right coronary artery aneurysm and patent ductus arteriosus underwent a surgical repair at our center. The diagnosis was confirmed by echocardiography, CT, and surgery. DNA was extracted from the peripheral venous blood samples of the patient and his mother after informed consent was obtained. Hematoxylin and Eosin (HE) and Alizarin red staining were performed on the excised coronary artery aneurysm. Exome sequencing and in silico analyses were performed to detect detrimental genetic variants. Results: No obvious abnormalities were found in the excised coronary artery aneurysm. A heterozygous truncated variant (NM_144573: c.G298T; p.G100X) in the NEXN gene and a missense variant (NM_001171: c.G1312A; p.V438M) in the ABCC6 gene were carried by the patient but not by his mother. Conclusion: The NEXN-truncated variant, NEXN-G100X, is associated with the development of coronary arteries and congenital coronary artery anomalies.

7.
Hum Genomics ; 16(1): 41, 2022 09 19.
Article in English | MEDLINE | ID: mdl-36123719

ABSTRACT

BACKGROUND: Heterotaxy syndrome (HTX) is caused by aberrant left-right patterning early in embryonic development, which results in abnormal positioning and morphology of the thoracic and abdominal organs. Currently, genetic testing discerns the underlying genetic cause in less than 20% of sporadic HTX cases, indicating that genetic pathogenesis remains poorly understood. In this study, we aim to garner a deeper understanding of the genetic factors of this disease by documenting the effect of different matrix metalloproteinase 21 (MMP21) variants on disease occurrence and pathogenesis. METHODS: Eighty-one HTX patients with complex congenital heart defects and 89 healthy children were enrolled, and we investigated the pathogenetic variants related to patients with HTX by exome sequencing. Zebrafish splice-blocking Morpholino oligo-mediated transient suppression assays were performed to confirm the potential pathogenicity of missense variants found in these patients with HTX. RESULTS: Three MMP21 heterozygous non-synonymous variants (c.731G > A (p.G244E), c.829C > T (p.L277F), and c.1459A > G (p.K487E)) were identified in three unrelated Chinese Han patients with HTX and complex congenital heart defects. Sanger sequencing confirmed that all variants were de novo. Cell transfection assay showed that none of the variants affect mRNA and protein expression levels of MMP21. Knockdown expression of mmp21 by splice-blocking Morpholino oligo in zebrafish embryos revealed a heart looping disorder, and mutant human MMP21 mRNA (c.731G > A, c.1459A > G, heterozygous mRNA (wild-type&c.731G > A), as well as heterozygous mRNA (wild-type& c.1459A > G) could not effectively rescue the heart looping defects. A patient with the MMP21 p.G244E variant was identified with other potential HTX-causing missense mutations, whereas the patient with the MMP21 p.K487E variant had no genetic mutations in other causative genes related to HTX. CONCLUSION: Our study highlights the role of the disruptive heterozygous MMP21 variant (p.K487E) in the etiology of HTX with complex cardiac malformations and expands the current mutation spectrum of MMP21 in HTX.


Subject(s)
Heterotaxy Syndrome , Animals , Child , China , Heterotaxy Syndrome/genetics , Humans , Morpholinos , RNA, Messenger , Risk Factors , Zebrafish/genetics
8.
Sensors (Basel) ; 22(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36015740

ABSTRACT

The efficient and accurate prediction of urban travel demand, which is a hot topic in intelligent transportation research, is challenging due to its complicated spatial-temporal dependencies, dynamic nature, and uneven distribution. Most existing forecasting methods merely considered the static spatial dependencies while ignoring the influence of the diversity of dynamic demand patterns and/or uneven distribution. In this paper, we propose a traffic demand forecasting framework of a hybrid dynamic graph convolutional network (HDGCN) model to deeply capture the characteristics of urban travel demand and improve prediction accuracy. In HDGCN, traffic flow similarity graphs are designed according to the dynamic nature of travel demand, and a dynamic graph sequence is generated according to time sequence. Then, the dynamic graph convolution module and the standard graph convolution module are introduced to extract the spatial features from dynamic graphs and static graphs, respectively. Finally, the spatial features of the two components are fused and combined with the gated recurrent unit (GRU) to learn the temporal features. The efficiency and accuracy of the HDGCN model in predicting urban taxi travel demand are verified by using the taxi data from Manhattan, New York City. The modeling and comparison results demonstrate that the HDGCN model can achieve stable and effective prediction for taxi travel demand compared with the state-of-the-art baseline models. The proposed model could be used for the real-time, accurate, and efficient travel demand prediction of urban taxi and other urban transportation systems.


Subject(s)
Automobiles , Transportation , Forecasting , Spatial Analysis , Transportation/methods , Travel
9.
Mol Genet Genomics ; 297(3): 671-687, 2022 May.
Article in English | MEDLINE | ID: mdl-35260939

ABSTRACT

Atrioventricular septal defects (AVSD) are a complicated subtype of congenital heart defects for which the genetic basis is poorly understood. Many studies have demonstrated that the transcription factor SOX7 plays a pivotal role in cardiovascular development. However, whether SOX7 single nucleotide variants are involved in AVSD pathogenesis is unclear. To explore the potential pathogenic role of SOX7 variants, we recruited a total of 100 sporadic non-syndromic AVSD Chinese Han patients and screened SOX7 variants in the patient cohort by targeted sequencing. Functional assays were performed to evaluate pathogenicity of nonsynonymous variants of SOX7. We identified three rare SOX7 variants, c.40C > G, c.542G > A, and c.743C > T, in the patient cohort, all of which were found to be highly conserved in mammals. Compared to the wild type, these SOX7 variants had increased mRNA expression and decreased protein expression. In developing hearts, SOX7 and GATA4 were highly expressed in the region of atrioventricular cushions. Moreover, SOX7 overexpression promoted the expression of GATA4 in human umbilical vein endothelial cells. A chromatin immunoprecipitation assay revealed that SOX7 could directly bind to the GATA4 promoter and luciferase assays demonstrated that SOX7 activated the GATA4 promoter. The SOX7 variants had impaired transcriptional activity relative to wild-type SOX7. Furthermore, the SOX7 variants altered the ability of GATA4 to regulate its target genes. In conclusion, our findings showed that deleterious SOX7 variants potentially contribute to human AVSD by impairing its interaction with GATA4. This study provides novel insights into the etiology of AVSD and contributes new strategies to the prenatal diagnosis of AVSD.


Subject(s)
Heart Septal Defects , Animals , GATA4 Transcription Factor/genetics , Genetic Predisposition to Disease , Heart Septal Defects/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mammals , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Transcription Factors/genetics
10.
ACS Appl Bio Mater ; 5(3): 1194-1201, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35179344

ABSTRACT

The development of smart drug delivery nanocarriers for tumor-targeted delivery and controllable release of therapeutic agents is appealing to achieve effective cancer chemotherapy. We herein use CaCO3 nanoparticles as the core to load doxorubicin (DOX) and direct the assembly of amphiphilic oxaliplatin prodrugs (Pt(IV)) in the presence of other commercial lipids. The obtained DOX-Pt(IV)-CaCO3-PEG with excellent physiological stability exhibits instant pH-responsive degradation, thus enabling efficient pH-dependent release of DOX. Via detailed pharmacokinetic study, it is shown that DOX-Pt(IV)-CaCO3-PEG shows significantly improved pharmacokinetic behaviors compared to these free drugs, featured in prolonged blood circulation time and superior tumor homing efficacy. Resultantly, treatment with systemic administration of DOX-Pt(IV)-CaCO3-PEG was the most effective in suppressing the growth of tumors in Balb/c mice. This study highlights that our liposomal CaCO3 is a robust and biocompatible platform for preparing pH-responsive drug delivery systems, due to its multifaceted drug loading capacity, and thus is promising for potential clinical translation.


Subject(s)
Nanoparticles , Neoplasms , Animals , Doxorubicin/therapeutic use , Drug Delivery Systems , Hydrogen-Ion Concentration , Lipids/therapeutic use , Mice , Neoplasms/drug therapy
11.
Orphanet J Rare Dis ; 16(1): 334, 2021 07 31.
Article in English | MEDLINE | ID: mdl-34332615

ABSTRACT

BACKGROUND: TBX1 (T-box transcription factor 1) is a major candidate gene that likely contributes to the etiology of velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Although the haploinsufficiency of TBX1 in both mice and humans results in congenital cardiac malformations, little has been elucidated about its upstream regulation. We aimed to explore the transcriptional regulation and dysregulation of TBX1. METHODS: Different TBX1 promoter reporters were constructed. Luciferase assays and electrophoretic mobility shift assays (EMSAs) were used to identify a cis-regulatory element within the TBX1 promoter region and its trans-acting factor. The expression of proteins was identified by immunohistochemistry and immunofluorescence. Variants in the cis-regulatory element were screened in conotruncal defect (CTD) patients. In vitro functional assays were performed to show the effects of the variants found in CTD patients on the transactivation of TBX1. RESULTS: We identified a cis-regulatory element within intron 1 of TBX1 that was found to be responsive to GATA6 (GATA binding protein 6), a transcription factor crucial for cardiogenesis. The expression patterns of GATA6 and TBX1 overlapped in the pharyngeal arches of human embryos. Transfection experiments and EMSA indicated that GATA6 could activate the transcription of TBX1 by directly binding with its GATA cis-regulatory element in vitro. Furthermore, sequencing analyses of 195 sporadic CTD patients without the 22q11.2 deletion or duplication identified 3 variants (NC_000022.11:g.19756832C > G, NC_000022.11:g.19756845C > T, and NC_000022.11:g. 19756902G > T) in the non-coding cis-regulatory element of TBX1. Luciferase assays showed that all 3 variants led to reduced transcription of TBX1 when incubated with GATA6. CONCLUSIONS: Our findings showed that TBX1 might be a direct transcriptional target of GATA6, and variants in the non-coding cis-regulatory element of TBX1 disrupted GATA6-mediated transactivation.


Subject(s)
DiGeorge Syndrome , Heart Defects, Congenital , Animals , DiGeorge Syndrome/genetics , GATA6 Transcription Factor , Humans , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transcription Factors/genetics , Transcriptional Activation/genetics
12.
Circulation ; 143(20): 2007-2022, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33663221

ABSTRACT

BACKGROUND: Heart failure (HF) is among the leading causes of morbidity and mortality, and its prevalence continues to rise. LARP7 (La ribonucleoprotein domain family member 7) is a master regulator that governs the DNA damage response and RNAPII (RNA polymerase II) pausing pathway, but its role in HF pathogenesis is incompletely understood. METHODS: We assessed LARP7 expression in human HF and in nonhuman primate and mouse HF models. To study the function of LARP7 in heart, we generated global and cardiac-specific LARP7 knockout mice. We acutely abolished LARP7 in mature cardiomyocytes by Cas9-mediated LARP7 somatic knockout. We overexpressed LARP7 in cardiomyocytes using adeno-associated virus serotype 9 and ATM (ataxia telangiectasia mutated protein) inhibitor. The therapeutic potential of LARP7-regulated pathways in HF was tested in a mouse myocardial infarction model. RESULTS: LARP7 was profoundly downregulated in failing human hearts and in nonhuman primate and murine hearts after myocardial infarction. Low LARP7 levels in failing hearts were linked to elevated reactive oxygen species, which activated the ATM-mediated DNA damage response pathway and promoted LARP7 ubiquitination and degradation. Constitutive LARP7 knockout in mouse resulted in impaired mitochondrial biogenesis, myocardial hypoplasia, and midgestational lethality. Cardiac-specific inactivation resulted in defective mitochondrial biogenesis, impaired oxidative phosphorylation, elevated oxidative stress, and HF by 4 months of age. These abnormalities were accompanied by reduced SIRT1 (silent mating type information regulation 2 homolog 1) stability and deacetylase activity that impaired SIRT1-mediated transcription of genes for oxidative phosphorylation and energy metabolism and dampened cardiac function. Restoring LARP7 expression after myocardial infarction by either adeno-associated virus-mediated LARP7 expression or small molecule ATM inhibitor substantially improved the function of injured heart. CONCLUSIONS: LARP7 is essential for mitochondrial biogenesis, energy production, and cardiac function by modulating SIRT1 homeostasis and activity. Reduction of LARP7 in diseased hearts owing to activation of the ATM pathway contributes to HF pathogenesis and restoring LARP7 in the injured heart confers myocardial protection. These results identify the ATM-LARP7-SIRT1 pathway as a target for therapeutic intervention in HF.


Subject(s)
Heart Failure/genetics , Mitochondria/metabolism , Ribonucleoproteins/metabolism , Animals , Disease Models, Animal , Humans , Mice , Organelle Biogenesis
13.
Cell Death Dis ; 12(2): 145, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33542185

ABSTRACT

Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play critical roles in human diseases. We aimed to clarify the role of lncRNA X-inactive specific transcript (XIST)/miR-149-3p/forkhead box P3 (FOXP3) axis in ovarian cancer (OC) cell growth. XIST, miR-149-3p and FOXP3 expression in OC tissues and cell lines was assessed, and the predictive role of XIST in prognosis of OC patients was analyzed. The OC cell lines were screened and accordingly treated with silenced/overexpressed XIST plasmid or miR-149-3p mimic/inhibitor, and then the proliferation, invasion, migration, colony formation ability, apoptosis, and cell cycle distribution of OC cells were measured. Effect of altered XIST and miR-149-3p on tumor growth in vivo was observed. Online website prediction and dual luciferase reporter gene were implemented to detect the targeting relationship of lncRNA XIST, miR-149-3p, and FOXP3. XIST and FOXP3 were upregulated, whereas miR-149-3p was downregulated in OC tissues and cells. High XIST expression indicated a poor prognosis of OC. Inhibition of XIST or elevation of miR-149-3p repressed proliferation, invasion, migration, and colony formation ability, and promoted apoptosis and cell cycle arrest of HO-8910 cells. In SKOV3 cells upon treatment of overexpressed XIST or reduction of miR-149-3p, there exhibited an opposite tendency. Based on online website prediction, dual luciferase reporter gene, and RNA pull-down assays, we found that there was a negative relationship between XIST and miR-149-3p, and miR-149-3p downregulated FOXP3 expression. This study highlights that knockdown of XIST elevates miR-149-3p expression to suppress malignant behaviors of OC cells, thereby inhibiting OC development.


Subject(s)
MicroRNAs/metabolism , Ovarian Neoplasms/metabolism , RNA, Long Noncoding/metabolism , Animals , Cell Line, Tumor , Disease Progression , Female , Humans , Mice , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Prognosis , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/genetics , Up-Regulation
14.
J Control Release ; 326: 256-264, 2020 10 10.
Article in English | MEDLINE | ID: mdl-32682904

ABSTRACT

Development of multifacted phototheranostics with bright fluorescence and absorbance in the second near infrared (NIR-II) window is very appealing for precise cancer diagnosis and treatment, but still challenging nowadays. Herein, we synthesize a hydrophobic annularly fused azaBODIPY (termed as HBP) molecule with sharp NIR absorbance peaked at 878 nm and bright NIR-II fluorescence. With Pluronic F127 as the surfactant and hydrophobic paclitaxel (PTX) as the spacer, such HBP molecule would self-assemble to form surfactant-stripped HBP/PTX micelles with absorption peak red-shifted to 1012 nm and intrinsic NIR-II fluorescence negligibly disturbed. We found that such HBP/PTX micelles can be utilized as a bimodal NIR-II nano-probe to enable real-time tracking of lymph nodes and tumors under an NIR-II fluorescence imaging system, as well as clear visualization of tumor microvasculatures under an NIR-II photoacoustic imaging system. Furthermore, together with 1064 nm laser exposure, such HBP/PTX micelles would synergistically suppress the growth of tumors grown on the mice upon tumor accumulation. This work highlights the concise preparation of a type of all-in-one NIR-II phototheranostics from the newly synthesized HBP molecules, thereby enables NIR-II fluorescence/photoacoustic bimodal imaging guided synergistic cancer treatment via the NIR-II laser boosted photothermal therapy and chemotherapy.


Subject(s)
Photoacoustic Techniques , Surface-Active Agents , Animals , Mice , Micelles , Paclitaxel , Phototherapy
15.
Front Immunol ; 11: 999, 2020.
Article in English | MEDLINE | ID: mdl-32587587

ABSTRACT

Objective: Cancer-associated fibroblasts (CAFs) were associated with tumor progression in the tumor microenvironment (TME). However, their immunosuppressive roles in protecting cancer cells from the attack by cytotoxic T lymphocytes (CTLs) are not fully clear. In this study, we investigated whether and how CAFs regulate tumor-infiltrating lymphocytes as well as their role in tumor immunosuppression. Methods: Eighty-three cases of ovarian cancer and 10 controls were analyzed for CAFs and CD8+ tumor-infiltrating lymphocytes by gene array and immunohistochemistry. We evaluated presenilin 1 (PS1) expression in CAFs, CTL penetration, tumor burden, dendritic cell function, and migration of tumor-infiltrating lymphocytes and their function in vivo and in vitro after silencing PS1. In addition, the pathway via which PS1 affects the TME was also evaluated. Results: PS1 was highly expressed in CAFs, and its silencing significantly promoted CD8+ CTL proliferation and penetration in multiple ovarian models (p < 0.05), resulting in tumor regression and growth inhibition. Interleukin (IL)-1ß was identified as a major immune inhibitor in the TME, and it was significantly decreased after PS1 silencing (p < 0.05), which was regulated by the WNT/ß-catenin pathway. It was also showed that high expression of IL-1ß in CAFs inhibits CTL penetration significantly (p < 0.05). Conclusion: Highly expressed PS1 in CAFs plays a crucial role in regulating tumor-infiltrating lymphocyte populations in the TME via the WNT/ß-catenin pathway. Targeting PS1 may retrieve functional CTLs in the TME and improve the efficacy of current immunotherapies.


Subject(s)
Cancer-Associated Fibroblasts/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Ovarian Neoplasms/metabolism , Presenilin-1/metabolism , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred C57BL , Ovarian Neoplasms/immunology , Presenilin-1/genetics , Tumor Microenvironment , Wnt Signaling Pathway
16.
Gene ; 710: 363-366, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31181314

ABSTRACT

LncRNA CASC11 promotes gastric cancer and colon cancer. Our study analyzed the role of CASC11 in ovarian squamous cell carcinoma (OSCC). In the present study we showed that plasma CASC11 was upregulated in OSCC, and the upregulation of CASC11 distinguished OSCC patients from control group. Plasma levels of CASC11 were further increased after chemotherapy. Treatment with oxaliplatin, tetraplatin, cisplatin, and carboplatin mediated the upregulation of CASC11 in cells of OSCC cell line. In addition, overexpression of CASC11 led to increased cancer cell viability under oxaliplatin, tetraplatin, cisplatin, and carboplatin treatment, while CASC11 siRNA silencing played an opposite role. Therefore, overexpression of CASC11 in OSCC mediated the development of cancer cell resistance to chemotherapy.


Subject(s)
Carcinoma, Squamous Cell/genetics , Drug Resistance, Neoplasm , Ovarian Neoplasms/genetics , RNA, Long Noncoding/genetics , Up-Regulation , Adult , Aged , Carboplatin/pharmacology , Carcinoma, Squamous Cell/blood , Case-Control Studies , Cell Line, Tumor , Cisplatin/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Organoplatinum Compounds/pharmacology , Ovarian Neoplasms/blood , Oxaliplatin/pharmacology , Prognosis , RNA, Long Noncoding/blood
17.
Front Genet ; 9: 559, 2018.
Article in English | MEDLINE | ID: mdl-30532766

ABSTRACT

Total anomalous pulmonary venous connection (TAPVC) is a rare congenital heart anomaly. Several genes have been associated TAPVC but the mechanisms remain elusive. To search novel CNVs and candidate genes, we screened a cohort of 78 TAPVC cases and 100 healthy controls for rare copy number variants (CNVs) using whole exome sequencing (WES). Then we identified pathogenic CNVs by statistical comparisons between case and control groups. After that, we identified altogether eight pathogenic CNVs of seven candidate genes (PCSK7, RRP7A, SERHL, TARP, TTN, SERHL2, and NBPF3). All these seven genes have not been described previously to be related to TAPVC. After network analysis of these candidate genes and 27 known pathogenic genes derived from the literature and publicly database, PCSK7 and TTN were the most important genes for TAPVC than other genes. Our study provides novel candidate genes potentially related to this rare congenital birth defect (CHD) which should be further fundamentally researched and discloses the possible molecular pathogenesis of TAPVC.

18.
EBioMedicine ; 38: 217-227, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30448225

ABSTRACT

BACKGROUND: Total anomalous pulmonary venous connection (TAPVC) is recognized as a rare congenital heart defect (CHD). With a high mortality rate of approximately 80%, the survival rate and outcomes of TAPVC patients are not satisfactory. However, the genetic aetiology and mechanism of TAPVC remain elusive. This study aimed to investigate the underlying genomic risks of TAPVC through next-generation sequencing (NGS). METHODS: Rare variants were identified through whole exome sequencing (WES) of 78 sporadic TAPVC cases and 100 healthy controls using Fisher's exact test and gene-based burden test. We then detected candidate gene expression patterns in cells, pulmonary vein tissues, and embryos. Finally, we validated these genes using target sequencing (TS) in another 100 TAPVC cases. FINDINGS: We identified 42 rare variants of 7 genes (CLTCL1, CST3, GXYLT1, HMGA2, SNAI1, VAV2, ZDHHC8) in TAPVC cases compared with controls. These genes were highly expressed in human umbilical vein endothelial cells (HUVECs), mouse pulmonary veins and human embryonic hearts. mRNA levels of these genes in human pulmonary vein samples were significantly different between cases and controls. Through network analysis and expression patterns in zebrafish embryos, we revealed that SNAI1, HMGA2 and VAV2 are the most important genes for TAPVC. INTERPRETATION: Our study identifies novel candidate genes potentially related to TAPVC and elucidates the possible molecular pathogenesis of this rare congenital birth defect. Furthermore, SNAI1, HMGA2 and VAV2 are novel TAPVC candidate genes that have not been reported previously in either humans or animals. FUND: National Natural Science Foundation of China.


Subject(s)
Genetic Association Studies , Genetic Variation , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , High-Throughput Nucleotide Sequencing , Phenotype , Pulmonary Veins/abnormalities , Alleles , Amino Acid Substitution , Animals , Child, Preschool , Computational Biology/methods , Computed Tomography Angiography , Female , Gene Expression , Gene Expression Profiling , Gene Regulatory Networks , Genetic Testing , Genome, Human , Genome-Wide Association Study , Heart Defects, Congenital/mortality , Humans , Infant , Male , Mutation , Polymorphism, Single Nucleotide , Survival Rate , Whole Genome Sequencing , Zebrafish
19.
J Transl Med ; 16(1): 260, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30241482

ABSTRACT

BACKGROUND: Conotruncal heart defect (CTD) is a complex congenital heart disease with a complex and poorly understood etiology. The transcriptional corepressor RIPPLY3 plays a pivotal role in heart development as a negative regulator of the key cardiac transcription factor TBX1. A previous study showed that RIPPLY3 contribute to cardiac outflow tract development in mice, however, the relationship between RIPPLY3 and human cardiac malformation has not been reported. METHODS: 615 unrelated CTD Chinese Han patients were enrolled, we excluded the 22q11.2 deletion/duplication using a modified multiplex ligation-dependent probe amplification method-CNVplex®, and investigated the variants of RIPPLY3 in 577 patients without the 22q11.2 deletion/duplication by target sequencing. Functional assays were performed to testify the potential pathogenicity of nonsynonymous variants found in these CTD patients. RESULTS: Four rare heterozygous nonsynonymous variants (p.P30L, p.T52S, p.D113N and p.V179D) were identified in four CTD patients, the variant NM_018962.2:c.155C>G (p.T52S) is referred as rs745539198, and the variant NM_018962.2:c.337G>A (p.D113N) is referred as rs747419773. However, variants p.P30L and p.V179D were not found in multiple online human gene variation databases. Western blot analysis and immunofluorescence showed that there were no significant difference between wild type RIPPLY3 and these four variants. Luciferase assays revealed that the p.T52S variant altered the inhibition of TBX1 transcriptional activity in vitro, and co-immunoprecipitation assays showed that the p.T52S variant reduced the physical interaction of RIPPLY3 with TBX1. In addition to the results from pathogenicity prediction tools and evolutionary protein conservation, the p.T52S variant was thought to be a potentially deleterious variant. CONCLUSION: Our results provide evidence that deleterious variants in RIPPLY3 are potential molecular mechanisms involved in the pathogenesis of human CTD.


Subject(s)
Abnormalities, Multiple/genetics , Asian People/genetics , Chromosome Duplication/genetics , DiGeorge Syndrome/genetics , Ethnicity/genetics , Genetic Predisposition to Disease , Heart Defects, Congenital/genetics , Loss of Function Mutation/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Amino Acid Sequence , Chromosomes, Human, Pair 22/genetics , Cohort Studies , DNA Copy Number Variations/genetics , HEK293 Cells , Humans , Mutation, Missense/genetics , Protein Binding , Repressor Proteins/chemistry , Risk Factors , T-Box Domain Proteins/genetics , Transcription, Genetic
20.
Mol Med Rep ; 18(2): 2356-2364, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29956768

ABSTRACT

Alagille syndrome (ALGS) is primarily caused by jagged1 (JAG1) mutations, 70% of which are protein­truncating mutations. However, no mutation hotspots have been discovered, and the pathogenic mechanism is not fully understood. The aim of the present study was to analyze two protein­truncating JAG1 mutations detected in three Chinese ALGS patients. Mutation c.1261delT (p.Cys421Valfs) was identified in one patient with hepatic damage, xanthomas, facial abnormalities and cardiovascular defects, which was inherited from his father. The other mutation, c.1382_1383delAC (p.Asp461Glyfs), carried by a pair of monozygotic twins with hepatic damage, facial abnormalities and cardiovascular defects, was de novo. Biological experiments were performed to study the characteristics and function of these mutations. The p.Cys421Valfs and p.Asp461Glyfs mutant proteins appeared to be truncated in western blotting using anti­Flag bound to the N­terminus of JAG1. The RBP­Jκ­responsive reporter gene assay was used to investigate the ability of mutant JAG1 proteins to activate the Notch signaling pathway. The mutant proteins had a lower luciferase activity than the wild­type, indicating impaired transcriptional activation ability. Western blotting using soluble JAG1 from the culture medium revealed that the expression levels of the mutant proteins were lower than that of the wild­type, suggesting that less mutant JAG1 protein underwent proteolytic cleavage than the wild­type. In conclusion, these two loss­of­function JAG1 mutations may be associated with ALGS manifestations in these patients.


Subject(s)
Alagille Syndrome/genetics , DNA Mutational Analysis , Jagged-1 Protein/genetics , Alagille Syndrome/epidemiology , Alagille Syndrome/physiopathology , China/epidemiology , Female , Humans , Male , Mutation , Pedigree , Phenotype , Signal Transduction , Twins, Monozygotic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...