Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.727
Filter
1.
Cancer Cell Int ; 24(1): 173, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760774

ABSTRACT

BACKGROUND: Drug resistance poses a significant challenge in cancer treatment, particularly as a leading cause of therapy failure. Cisplatin, the primary drug for lung adenocarcinoma (LUAD) chemotherapy, shows effective treatment outcomes. However, the development of resistance against cisplatin is a major obstacle. Therefore, identifying genes resistant to cisplatin and adopting personalized treatment could significantly improve patient outcomes. METHODS: By examining transcriptome data of cisplatin-resistant LUAD cells from the GEO database, 181 genes associated with cisplatin resistance were identified. Using univariate regression analysis, random forest and multivariate regression analyses, two prognostic genes, E2F7 and FAM83A, were identified. This study developed a prognostic model utilizing E2F7 and FAM83A as key indicators. The Cell Counting Kit 8 assay, Transwell assay, and flow cytometry were used to detect the effects of E2F7 on the proliferation, migration, invasiveness and apoptosis of A549/PC9 cells. Western blotting was used to determine the effect of E2F7 on AKT/mTOR signaling pathway. RESULTS: This study has pinpointed two crucial genes associated with cisplatin resistance, E2F7 and FAM83A, and developed a comprehensive model to assist in the diagnosis, prognosis, and evaluation of relapse risk in LUAD. Analysis revealed that patients at higher risk, according to these genetic markers, had elevated levels of immune checkpoints (PD-L1 and PD-L2). The prognostic and diagnosis values of E2F7 and FAM83A were further confirmed in clinical data. Furthermore, inhibiting E2F7 in lung cancer cells markedly reduced their proliferation, migration, invasion, and increased apoptosis. In vivo experiments corroborated these findings, showing reduced tumor growth and lung metastasis upon E2F7 suppression in lung cancer models. CONCLUSION: Our study affirms the prognostic value of a model based on two DEGs, offering a reliable method for predicting the success of tumor immunotherapy in patients with LUAD. The diagnostic and predictive model based on these genes demonstrates excellent performance. In vitro, reducing E2F7 levels shows antitumor effects by blocking LUAD growth and progression. Further investigation into the molecular mechanisms has highlighted E2F7's effect on the AKT/mTOR signaling pathway, underscoring its therapeutic potential. In the era of personalized medicine, this DEG-based model promises to guide clinical practice.

2.
Exp Ther Med ; 27(6): 267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38756907

ABSTRACT

The pathogenesis of adolescent idiopathic scoliosis (AIS) remains unclear. It has been found that interleukin-6 (IL-6) rs1800795 locus and matrix metalloproteinase-3 (MMP-3) rs3025058 locus gene polymorphisms may be associated with AIS susceptibility, which has been controversial and needs to be further confirmed by updated meta-analysis. The aim of the present study was to investigate the association of MMP-3 rs3025058 and IL-6 rs1800795 single nucleotide polymorphisms (SNPs) with susceptibility to AIS. All relevant articles that met the criteria were retrieved and included, and the publication dates were limited from January 2005 to December 2023. The allele frequencies and different genotype frequencies of IL-6 rs1800795 and MMP-3 rs3025058 loci in each study were extracted and statistically analyzed by ReviewManager 5.4 software, and the odds ratio (OR) and 95% confidence interval (95% CI) of different genetic models were calculated. The results of the meta-analysis showed that there was no significant association between the gene polymorphism of IL-6 rs1800795 locus and the pathogenesis of AIS. The allele 5A and genotype 5A5A of MMP-3 rs3025058 SNP were associated with AIS susceptibility (5A vs. 6A, OR=1.18; 95% CI, 1.04-1.33; 5A5A vs. 6A6A, OR=1.65; 95% CI, 1.23-2.21; and 5A5A vs. 5A6A + 6A6A, OR=1.54; 95% CI, 1.19-1.99). Results of subgroup analysis revealed that the allele 5A and genotype 5A5A of MMP-3 rs3025058 SNP were associated with AIS susceptibility in the Caucasian population, and the susceptibility of AIS was associated with the genotype 5A5A of MMP-3 rs3025058 SNP in an Asian population. There was no significant association between the gene polymorphism of IL-6 rs1800795 locus and the pathogenesis of AIS, while the allele 5A of MMP-3 rs3025058 locus was associated with the susceptibility to AIS, especially in the Caucasian population.

3.
Heliyon ; 10(9): e30175, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707435

ABSTRACT

In recent years, environmental factors have received attention in the pathogenesis of neurodegenerative diseases. Other than genetic factors, the identification of environmental factors and modifiable risk factors may create opportunities to delay the onset or slow the progression of Lewy body disease. Researchers have made significant progress in understanding environmental and modifiable risk factors over the past 30 years. To date, despite the increasing number of articles assessing risk factors for Lewy body disease, few reviews have focused on their role in its onset. In this review, we reviewed the literature investigating the relationship between Lewy body disease and several environmental and other modifiable factors. We found that some air pollutants, exposure to some metals, and infection with some microorganisms may increase the risk of Lewy body disease. Coffee intake and the Mediterranean diet are protective factors. However, it is puzzling that low educational levels and smoking may have some protective effects. In addition, we proposed specific protocols for subsequent research directions on risk factors for neurodegenerative diseases and improved methods. By conducting additional case-control studies, we could explore the role of these factors in the etiopathogenesis of Lewy body disease, establishing a foundation for strategies aimed at preventing and reducing the onset and burden of the disease.

4.
Adv Sci (Weinh) ; : e2403607, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728594

ABSTRACT

Graphitic carbon nitride (CN), as a nonmetallic photocatalyst, has gained considerable attention for its cost-effectiveness and environmentally friendly nature in catalyzing solar-driven CO2 conversion into valuable products. However, the photocatalytic efficiency of CO2 reduction with CN remains low, accompanied by challenges in achieving desirable product selectivity. To address these limitations, a two-step hydrothermal-calcination tandem synthesis strategy is presented, introducing carbon quantum dots (CQDs) into CN and forming ultra-thin CQD/CN nanosheets. The integration of CQDs induces a distinct work function with CN, creating a robust interface electric field after the combination. This electric field facilitates the accumulation of photoelectrons in the CQDs region, providing an abundant source of reduced electrons for the photocatalytic process. Remarkably, the CQD/CN nanosheets exhibit an average CO yield of 120 µmol g-1, showcasing an outstanding CO selectivity of 92.8%. The discovery in the work not only presents an innovative pathway for the development of high-performance photocatalysts grounded in non-metallic CN materials employing CQDs but also opens new avenues for versatile application prospects in environmental protection and sustainable cleaning energy.

5.
Brain Behav ; 14(5): e3504, 2024 May.
Article in English | MEDLINE | ID: mdl-38698583

ABSTRACT

BACKGROUND: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS: There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION: The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.


Subject(s)
Electroacupuncture , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Electroacupuncture/methods , Male , Rats , Reperfusion Injury/physiopathology , Reperfusion Injury/therapy , Reperfusion Injury/diagnostic imaging , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Brain Ischemia/therapy , Brain Ischemia/physiopathology , Brain Ischemia/diagnostic imaging , Disease Models, Animal , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/diagnostic imaging , Hippocampus/diagnostic imaging , Hippocampus/physiopathology
6.
EBioMedicine ; 103: 105142, 2024 May.
Article in English | MEDLINE | ID: mdl-38691939

ABSTRACT

BACKGROUND: Both defects in mismatch repair (dMMR) and high microsatellite instability (MSI-H) have been recognised as crucial biomarkers that guide treatment strategies and disease management in colorectal cancer (CRC). As MMR and MSI tests are being widely conducted, an increasing number of MSI-H tumours have been identified in CRCs with mismatch repair proficiency (pMMR). The objective of this study was to assess the clinical features of patients with pMMR/MSI-H CRC and elucidate the underlying molecular mechanism in these cases. METHODS: From January 2015 to December 2018, 1684 cases of pMMR and 401 dMMR CRCs were enrolled. Of those patients, 93 pMMR/MSI-H were identified. The clinical phenotypes and prognosis were analysed. Frozen and paraffin-embedded tissue were available in 35 patients with pMMR/MSI-H, for which comprehensive genomic and transcriptomic analyses were performed. FINDINGS: In comparison to pMMR/MSS CRCs, pMMR/MSI-H CRCs exhibited significantly less tumour progression and better long-term prognosis. The pMMR/MSI-H cohorts displayed a higher presence of CD8+ T cells and NK cells when compared to the pMMR/MSS group. Mutational signature analysis revealed that nearly all samples exhibited deficiencies in MMR genes, and we also identified deleterious mutations in MSH3-K383fs. INTERPRETATION: This study revealed pMMR/MSI-H CRC as a distinct subgroup within CRC, which manifests diverse clinicopathological features and long-term prognostic outcomes. Distinct features in the tumour immune-microenvironment were observed in pMMR/MSI-H CRCs. Pathogenic deleterious mutations in MSH3-K383fs were frequently detected, suggesting another potential biomarker for identifying MSI-H. FUNDING: This work was supported by the Science and Technology Commission of Shanghai Municipality (20DZ1100101).


Subject(s)
Colorectal Neoplasms , DNA Mismatch Repair , Microsatellite Instability , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Female , Male , Middle Aged , Prognosis , Aged , Mutation , Biomarkers, Tumor/genetics , Adult , Gene Expression Profiling , MutS Homolog 3 Protein/genetics , MutS Homolog 3 Protein/metabolism , Neoplasm Staging
7.
Ultrason Sonochem ; 106: 106899, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38733852

ABSTRACT

Chitosan nanoparticles (NPs) possess great potential in biomedical fields. Orifice-induced hydrodynamic cavitation (HC) has been used for the enhancement of fabrication of size-controllable genipin-crosslinked chitosan (chitosan-genipin) NPs based on the emulsion cross-linking (ECLK). Experiments have been performed using various plate geometries, chitosan molecular weight and under different operational parameters such as inlet pressure (1-3.5 bar), outlet pressure (0-1.5 bar) and cross-linking temperature (40-70 °C). Orifice plate geometry was a crucial factor affecting the properties of NPs, and the optimized geometry of orifice plate was with single hole of 3.0 mm diameter. The size of NPs with polydispersity index of 0.359 was 312.6 nm at an optimized inlet pressure of 3.0 bar, and the maximum production yield reached 84.82 %. Chitosan with too high or too low initial molecular weight (e.g., chitosan oligosaccharide) was not applicable for producing ultra-fine and narrow-distributed NPs. There existed a non-linear monotonically-increasing relationship between cavitation number (Cv) and chitosan NP size. Scanning electron microscopy (SEM) test indicated that the prepared NPs were discrete with spherical shape. The study demonstrated the superiority of HC in reducing particle size and size distribution of NPs, and the energy efficiency of orifice type HC-processed ECLK was two orders of magnitude than that of ultrasonic horn or high shear homogenization-processed ECLK. In vitro drug-release studies showed that the fabricated NPs had great potential as a drug delivery system. The observations of this study can offer strong support for HC to enhance the fabrication of size-controllable chitosan-genipin NPs.

8.
Cell Commun Signal ; 22(1): 271, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750493

ABSTRACT

BACKGROUND: Macrophages are key inflammatory immune cells that orchestrate the initiation and progression of autoimmune diseases. The characters of macrophage in diseases are determined by its phenotype in response to the local microenvironment. Ficolins have been confirmed as crucial contributors to autoimmune diseases, with Ficolin-2 being particularly elevated in patients with autoimmune diseases. However, whether Ficolin-A stimulates macrophage polarization is still poorly understood. METHODS: We investigated the transcriptomic expression profile of murine bone marrow-derived macrophages (BMDMs) stimulated with Ficolin-A using RNA-sequencing. To further confirm a distinct phenotype activated by Ficolin-A, quantitative RT-PCR and Luminex assay were performed in this study. Additionally, we assessed the activation of underlying cell signaling pathways triggered by Ficolin-A. Finally, the impact of Ficolin-A on macrophages were investigated in vivo through building Collagen-induced arthritis (CIA) and Dextran Sulfate Sodium Salt (DSS)-induced colitis mouse models with Fcna-/- mice. RESULTS: Ficolin-A activated macrophages into a pro-inflammatory phenotype distinct to LPS-, IFN-γ- and IFN-γ + LPS-induced phenotypes. The transcriptomic profile induced by Ficolin-A was primarily characterized by upregulation of interleukins, chemokines, iNOS, and Arginase 1, along with downregulation of CD86 and CD206, setting it apart from the M1 and M2 phenotypes. The activation effect of Ficolin-A on macrophages deteriorated the symptoms of CIA and DSS mouse models, and the deletion of Fcna significantly alleviated the severity of diseases in mice. CONCLUSION: Our work used transcriptomic analysis by RNA-Seq to investigate the impact of Ficolin-A on macrophage polarization. Our findings demonstrate that Ficolin-A induces a novel pro-inflammatory phenotype distinct to the phenotypes activated by LPS, IFN-γ and IFN-γ + LPS on macrophages.


Subject(s)
Ficolins , Inflammation , Lectins , Macrophages , Mice, Inbred C57BL , Phenotype , Animals , Macrophages/metabolism , Macrophages/drug effects , Lectins/genetics , Lectins/metabolism , Mice , Inflammation/genetics , Inflammation/pathology , Macrophage Activation/drug effects , Colitis/chemically induced , Colitis/pathology , Colitis/genetics , Cell Polarity/drug effects , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Signal Transduction/drug effects
9.
Front Sports Act Living ; 6: 1393988, 2024.
Article in English | MEDLINE | ID: mdl-38756186

ABSTRACT

Background: Long-term skill learning can lead to structure and function changes in the brain. Different sports can trigger neuroplasticity in distinct brain regions. Volleyball, as one of the most popular team sports, heavily relies on individual abilities such as perception and prediction for high-level athletes to excel. However, the specific brain mechanisms that contribute to the superior performance of volleyball athletes compared to non-athletes remain unclear. Method: We conducted a study involving the recruitment of ten female volleyball athletes and ten regular female college students, forming the athlete and novice groups, respectively. Comprehensive behavioral assessments, including Functional Movement Screen and audio-visual reaction time tests, were administered to both groups. Additionally, resting-state magnetic resonance imaging (MRI) data were acquired for both groups. Subsequently, we conducted in-depth analyses, focusing on the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in the brain for both the athlete and novice groups. Results: No significant differences were observed in the behavioral data between the two groups. However, the athlete group exhibited noteworthy enhancements in both the ALFF and ReHo within the visual cortex compared to the novice group. Moreover, the functional connectivity between the visual cortex and key brain regions, including the left primary sensory cortex, left supplementary motor cortex, right insula, left superior temporal gyrus, and left inferior parietal lobule, was notably stronger in the athlete group than in the novice group. Conclusion: This study has unveiled the remarkable impact of volleyball athletes on various brain functions related to vision, movement, and cognition. It indicates that volleyball, as a team-based competitive activity, fosters the advancement of visual, cognitive, and motor skills. These findings lend additional support to the early cultivation of sports talents and the comprehensive development of adolescents. Furthermore, they offer fresh perspectives on preventing and treating movement-related disorders. Trial registration: Registration number: ChiCTR2400079602. Date of Registration: January 8, 2024.

10.
CNS Neurosci Ther ; 30(5): e14742, 2024 05.
Article in English | MEDLINE | ID: mdl-38715283

ABSTRACT

BACKGROUND: Adenosine A3 receptor (ADORA3) belongs to the adenosine receptor families and the role of ADORA3 in vascular dementia (VaD) is largely unexplored. The present study sought to determine the therapeutic role of ADORA3 antagonist in a mouse model of VaD. METHODS: The GSE122063 dataset was selected to screen the differential expression genes and pathways between VaD patients and controls. A mouse model of bilateral carotid artery stenosis (BCAS) was established. The cognitive functions were examined by the novel object recognition test, Y maze test, and fear of conditioning test. The white matter injury (WMI) was examined by 9.4 T MRI, western blot, and immunofluorescence staining. The mechanisms of ADORA3-regulated phagocytosis by microglia were examined using qPCR, western blot, dual immunofluorescence staining, and flow cytometry. RESULTS: The expression of ADORA3 was elevated in brain tissues of VaD patients and ADORA3 was indicated as a key gene for VaD in the GSE122063. In BCAS mice, the expression of ADORA3 was predominantly elevated in microglia in the corpus callosum. ADORA3 antagonist promotes microglial phagocytosis to myelin debris by facilitating cAMP/PKA/p-CREB pathway and thereby ameliorates WMI and cognitive impairment in BCAS mice. The therapeutic effect of ADORA3 antagonist was partially reversed by the inhibition of the cAMP/PKA pathway. CONCLUSIONS: ADORA3 antagonist alleviates chronic ischemic WMI by modulating myelin clearance of microglia, which may be a potential therapeutic target for the treatment of VaD.


Subject(s)
Dementia, Vascular , Mice, Inbred C57BL , Microglia , Phagocytosis , Receptor, Adenosine A3 , Animals , Humans , Male , Mice , Brain Ischemia/metabolism , Brain Ischemia/pathology , Carotid Stenosis , Dementia, Vascular/pathology , Dementia, Vascular/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Organic Chemicals , Phagocytosis/drug effects , Phagocytosis/physiology , Receptor, Adenosine A3/metabolism , Receptor, Adenosine A3/genetics , White Matter/pathology , White Matter/metabolism , White Matter/drug effects
11.
Curr Med Imaging ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38591213

ABSTRACT

BACKGROUND: To investigate the optimal B1,rms value of renal amide proton transfer-weighted (APTw) images and the reproducibility of this value, and to explore the utility of APT imaging of renal masses and kidney tissues. METHODS: APTw images with different B1,rms values were repeatedly recorded in 15 healthy volunteers to determine the optimal value. Two 4-point Likert scales (poor [1] to excellent [4]) were used to evaluate contour clarity and artifacts in masses and normal tissues. The APTw values of masses and normal tissues were then compared in evaluable images (contour clarity score > 1, artifacts score > 1). The APTw of malignant masses, normal tissues, and benign masses were calculated and compared with the Mann-Whitney U test. RESULTS: The optimal scanning parameter of B1,rms was 2 µT, and the APTw images had good agreement in the volunteers. Our study of APTw imaging examined 70 renal masses (13 benign, 57 malignant) and 49 normal kidneys (including those from 15 healthy volunteers). The mean APTw value for renal malignant masses (2.28(1.55)) was different from that for benign masses (0.91(1.30)) (P<0.001), renal cortex (1.30 (1.25)) (P<0.001), renal medulla (1.64 (1.33)) (P<0.05), and renal pelvis (5.49 (2.65)) (P<0.001). CONCLUSION: These preliminary data demonstrate that APTw imaging of the kidneys has potential use as an imaging biomarker for the differentiation of normal tissues, malignant masses, and benign masses.

12.
Transl Psychiatry ; 14(1): 177, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575556

ABSTRACT

Excessive iron accumulation in the brain cortex increases the risk of cognitive deterioration. However, interregional relationships (defined as susceptibility connectivity) of local brain iron have not been explored, which could provide new insights into the underlying mechanisms of cognitive decline. Seventy-six healthy controls (HC), 58 participants with mild cognitive impairment due to probable Alzheimer's disease (MCI-AD) and 66 participants with white matter hyperintensity (WMH) were included. We proposed a novel approach to construct a brain susceptibility network by using Kullback‒Leibler divergence similarity estimation from quantitative susceptibility mapping and further evaluated its topological organization. Moreover, sparse logistic regression (SLR) was applied to classify MCI-AD from HC and WMH with normal cognition (WMH-NC) from WMH with MCI (WMH-MCI).The altered susceptibility connectivity in the MCI-AD patients indicated that relatively more connectivity was involved in the default mode network (DMN)-related and visual network (VN)-related connectivity, while more altered DMN-related and subcortical network (SN)-related connectivity was found in the WMH-MCI patients. For the HC vs. MCI-AD classification, the features selected by the SLR were primarily distributed throughout the DMN-related and VN-related connectivity (accuracy = 76.12%). For the WMH-NC vs. WMH-MCI classification, the features with high appearance frequency were involved in SN-related and DMN-related connectivity (accuracy = 84.85%). The shared and specific patterns of the susceptibility network identified in both MCI-AD and WMH-MCI may provide a potential diagnostic biomarker for cognitive impairment, which could enhance the understanding of the relationships between brain iron burden and cognitive decline from a network perspective.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , White Matter/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Iron
13.
JMIR Public Health Surveill ; 10: e51449, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630534

ABSTRACT

BACKGROUND: Limited studies have explored the impact of the Omicron variant on SARS-CoV-2 infection, hospitalization, and associated factors among people living with HIV, particularly in China. The adjustment of preventive policies since December 2022 in China presents an opportunity to evaluate the real-world factors influencing SARS-CoV-2 infection and related hospitalization among people living with HIV. OBJECTIVE: This study aimed to investigate SARS-CoV-2 infection, hospitalization rates, and associated factors among people living with HIV following the adjustment of preventive policies from December 2022 to February 2023 in southeastern China. METHODS: A cross-sectional telephone or web-based survey was conducted among people living with HIV in 5 cities in southeastern China from December 2022 to February 2023. Demographic information, SARS-CoV-2 infection and related hospitalization, and HIV-specific characteristics were collected from existing databases and special investigations. Multivariate logistic regression analyses were conducted to determine the associated factors for infection and hospitalization rates of SARS-CoV-2. Additionally, subgroup analyses were conducted for the association between vaccination and infection across different vaccination statuses and time since the last vaccination. RESULTS: Among people living with HIV with a COVID-19 testing history, the SARS-CoV-2 infection rate was 67.13% (95% CI 65.81%-68.13%), whereas the hospitalization rate was 0.71% (95% CI 0.46%-0.97%). Factors such as age, latest CD4 cell count, latest HIV viral load, and transmission route were found to be associated with SARS-CoV-2 infection, while age, cancer, latest CD4 cell count, and latest HIV viral load were associated with SARS-CoV-2 hospitalization. In terms of SARS-CoV-2 vaccination, compared to unvaccinated people living with HIV, there was a lower infection rate among those who had been vaccinated for <3 months in the booster vaccination group (adjusted odds ratio [aOR] 0.72, 95% CI 0.53-0.98; P=.04); and there was also a lower risk of hospitalization among people living with HIV who had received vaccination in the past 6-12 months (aOR 0.33, 95% CI 0.14-0.81; P=.02) and more than 12 months ago (aOR 0.22, 95% CI 0.07-0.72; P=.01). CONCLUSIONS: After the ease of prevention and control measures in China, we observed a high SARS-CoV-2 infection rate but a low hospitalization rate. General risk factors, such as higher age and vaccination status, and HIV-related parameters, such as the latest CD4 cell count and HIV viral load, were associated with SARS-CoV-2 infection and hospitalization. A booster vaccination campaign for booster doses should be considered among people living with HIV in confronting possible COVID-19 epidemic emergencies in the near future.


Subject(s)
COVID-19 , HIV Infections , Humans , COVID-19/epidemiology , SARS-CoV-2 , Cross-Sectional Studies , COVID-19 Testing , COVID-19 Vaccines , China/epidemiology , Hospitalization , HIV Infections/complications , HIV Infections/epidemiology
14.
Future Microbiol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652264

ABSTRACT

Aim: Proof-of-concept study, highlighting the clinical diagnostic ability of FT-IR compared with MALDI-TOF MS, combined with WGS. Materials & methods: 104 pathogenic isolates of Neisseria meningitidis, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus were analyzed. Results: Overall prediction accuracy was 99.6% in FT-IR and 95.8% in MALDI-TOF-MS. Analysis of N. meningitidis serogroups was superior in FT-IR compared with MALDI-TOF-MS. Phylogenetic relationship of S. pyogenes was similar by FT-IR and WGS, but not S. aureus or S. pneumoniae. Clinical severity was associated with the zinc ABC transporter and DNA repair genes in S. pneumoniae and cell wall proteins (biofilm formation, antibiotic and complement permeability) in S. aureus via WGS. Conclusion: FT-IR warrants further clinical evaluation as a promising diagnostic tool.


We tested a technique (FT-IR) to identify four different, common bacteria from 104 children with serious infections and compared it to lab methods for diagnosis. FT-IR was more accurate. We tested if it could identify subtypes of bacteria, which is important in outbreaks. It was able to subtype two species, but not the two other species. However, it is a much faster and cheaper technique than the gold standard. It may be useful in certain outbreaks. We also investigated the trends between genes and the length of hospital stay. This can support further laboratory research. As a fast, low-cost test, FT-IR warrants further testing before it is applied to clinical labs.

15.
Macromol Rapid Commun ; : e2400177, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38636558

ABSTRACT

The dynamic mechanical strength of the extracellular matrix (ECM) has been demonstrated to play important role in determining the cell behavior. Growing evidences suggest that the gradual stiffening process of the matrix is particularly decisive during tissue development and wound healing. Herein, a novel strategy to prepare hydrogels with gradually enhanced mechanical strength is provided. Such hydrogels could maintain the dynamic properties at their initial states, such as self-healing and shear-thinning properties. With subsequent slow covalent crosslinking, the stability and mechanical properties would be gradually improved. This method is useful for sequence programmability and oxidation strategies, which has provided an alternated tool to study cell behavior during dynamic increase in mechanical strength of ECM.

16.
Waste Manag ; 180: 135-148, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38564914

ABSTRACT

Short-term high-temperature pretreatment can effectively shorten the maturity period of organic waste composting and improve the fertilizer efficiency and humification degree of products. To investigate the effect and mechanism of the end products on the saline-alkali soil improvement and plant growth, the short-term high-temperature pretreatment composting (SHC) and traditional composting (STC) were separately blended with saline-alkali soil in a ratio of 0-40 % to establish a soil-fertilizer blended matrix for cultivating Lolium perenne L. The pot experiments combined with principal component analysis showed Lolium perenne L. planted in 20 % SHC-blended saline-alkali soil had the best growth effect, and its biomass, chlorophyll content, and plant height were 109-113 % higher than STC. The soil physicochemical property analysis showed that SHC and STC increased the soil nutrient content, humification degree, and enzyme activity at any blending ratio. The microbial analysis showed that 20 % SHC in the saline-alkali soil stimulated the growth of functional microorganisms and the addition of SHC promoted the sulfur cycle, nitrogen fixation, and carbon metabolism in the soil-plant system. The correlation analysis showed that pH; nutrient contents; and urease, catalase, sucrase, and phosphatase activities in the saline-alkali soil were significantly correlated with plant growth indexes (p < 0.05). Georgenia and norank_f__Fodinicurvataceae had a stronger correlation with four types of enzyme activities (p < 0.01). SHC improved the saline-alkali soil and promoted plant growth by adjusting soil pH, increasing soil nutrients, and influencing soil enzyme activity and dominant flora. This study provides a theoretical basis for applying SHC products in soil improvement.


Subject(s)
Composting , Lolium , Fertilizers , Temperature , Alkalies , Soil/chemistry , Plants , Bacteria
17.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 156-159, 2024 Mar 30.
Article in Chinese | MEDLINE | ID: mdl-38605614

ABSTRACT

Objective: The distribution of the photon energy spectrum in isocenter plane of the medical linear accelerator and the influence of secondary collimator on the photon energy spectrum are studied. Methods Use the BEAMnrc program to simulate the transmission of the 6 MeV electrons and photons in 5 cm×5 cm,10 cm×10 cm,15 cm×15 cm and 20 cm×20 cm fields in treatment head of the medical linear accelerator, where a phase space file was set up at the isocenter plane to record the particle information passing through this plane. The BEAMdp program is used to analyze the phase space file, in order to obtain the distribution of the photon energy spectrum in isocenter plane and the influence of secondary collimator on the photon energy spectrum. Results: By analyzing the photon energy spectrum of a medical linear accelerator with a nominal energy of 6 MV, it is found that the secondary collimator has little effect on the photon energy spectrum; different fields have different photon energy spectrum distributions; the photon energy spectrum in different central regions of the same field have the same normalized distribution. Conclusion: In the dose calculation of radiation therapy, the influence of photon energy spectrum should be carefully considered.


Subject(s)
Photons , Radiotherapy Planning, Computer-Assisted , Monte Carlo Method , Photons/therapeutic use , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage
18.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 208-211, 2024 Mar 30.
Article in Chinese | MEDLINE | ID: mdl-38605623

ABSTRACT

In recent years, new degradable materials have been applied to cardiovascular implants. Cardiovascular implants with different physicochemical properties and degradation properties have special endpoints for their biological evaluation. In this study, the end points of biological evaluation of degradable cardiovascular implants were reviewed by taking vascular stents and occluders as examples.


Subject(s)
Absorbable Implants , Cardiovascular System , Stents , Biocompatible Materials/chemistry
19.
Front Immunol ; 15: 1375171, 2024.
Article in English | MEDLINE | ID: mdl-38566986

ABSTRACT

Background: The underlying molecular pathways of idiopathic pulmonary fibrosis (IPF), a progressive lung condition with a high death rate, are still mostly unknown. By using microarray datasets, this study aims to identify new genetic targets for IPF and provide light on the genetic factors that contribute to the development of IPF. Method: We conducted a comprehensive analysis of three independent IPF datasets from the Gene Expression Omnibus (GEO) database, employing R software for data handling and normalization. Our evaluation of the relationships between differentially expressed genes (DEGs) and IPF included differential expression analysis, expression quantitative trait loci (eQTL) analysis, and Mendelian Randomization(MR) analyses. Additionally, we used Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to explore the functional roles and pathways of these genes. Finally, we validated the results obtained for the target genes. Results: We identified 486 highly expressed genes and 468 lowly expressed genes that play important roles in IPF. MR analysis identified six significantly co-expressed genes associated with IPF, specifically C12orf75, SPP1, ZG16B, LIN7A, PPP1R14A, and TLR2. These genes participate in essential biological processes and pathways, including macrophage activation and neural system regulation. Additionally, CIBERSORT analysis indicated a unique immune cell distribution in IPF, emphasized the significance of immunological processes in the disease. The MR analysis was consistent with the results of the analysis of variance in the validation cohort, which strengthens the reliability of our MR findings. Conclusion: Our findings provide new insights into the molecular basis of IPF and highlight the promise of therapeutic interventions. They emphasize the potential of targeting specific molecular pathways for the treatment of IPF, laying the foundation for further research and clinical work.


Subject(s)
Gene Expression Profiling , Idiopathic Pulmonary Fibrosis , Humans , Reproducibility of Results , Idiopathic Pulmonary Fibrosis/genetics , Databases, Factual , Gene Ontology , Membrane Proteins , Vesicular Transport Proteins
20.
Org Lett ; 26(18): 3767-3771, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38664947

ABSTRACT

A copper-catalyzed efficient regioselective silylation reaction of chloro-substituted allenyl-Bdan was developed. Under mild reaction conditions, allenyl and propargyl silane compounds can be selectively obtained in moderate to high yields by adjusting the bases and solvents used in the reactions. This study offers direct and efficient methods for synthesizing multifunctionalized allenyl and propargyl silane compounds from the same initial material of chloro-substituted allenyl-Bdan.

SELECTION OF CITATIONS
SEARCH DETAIL
...