Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
J Food Sci ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778560

ABSTRACT

Cow milk allergy is one of the common food allergies. Our previous study showed that the allergenicity of fermented milk is lower than that of unfermented skimmed milk in vitro, and the antigenicity of ß-lactoglobulin and α-lactalbumin in fermented milk was decreased by 67.54% and 80.49%, respectively. To confirm its effects in vivo, allergic BALB/C mice model was used to further study the allergenicity of fermented milk. It was found that compared with the skim milk (SM) group, the intragastrically sensitization with fermented milk had no obvious allergic symptoms and the fingers were more stable: lower levels of IgE, IgG, and IgA in serum, lower levels of plasma histamine and mast cell protein-1, and immune balance of Th1/Th2 and Treg/Th17. At the same time, intragastrically sensitization with fermented milk increased the α diversity of intestinal microbiota and changed the microbiota abundance: the relative abundance of norank-f-Muribaculaceae and Staphylococcus significantly decreased, and the abundance of Lachnospiraceae NK4A136 group, Bacteroides, and Turicibacter increased. In addition, fermented milk can also increase the level of short-chain fatty acids in the intestines of mice. It turns out that fermented milk is much less allergenicity than SM. PRACTICAL APPLICATION: Fermentation provides a theoretical foundation for reducing the allergenicity of milk and dairy products, thereby facilitating the production of low-allergenic dairy products suitable for individuals with milk allergies.

2.
Int J Food Microbiol ; 418: 110743, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38749262

ABSTRACT

Spicy cabbage is a popular fermented vegetable food. The study aimed to determine the physicochemical properties, volatile flavor components, sensory evaluation, and microbial diversity of spicy cabbage prepared using different methods. Three methods were used: single-bacteria fermentation with Lactiplantibacillus plantarum YB-106 and Leuconostoc mesenteroides YB-23, mixed fermentation (LMP) using both strains, and natural fermentation as the blank control (CON). The LMP group has the best quality of spicy cabbage and the highest sensory score. Esters and alkenes were the main volatile flavor components of the spicy cabbage by GC-MS. The fermentation time of LMP group was shorter, and the nitrite degradation rate was >60 %, which was significantly higher than that of other groups (p < 0.05). From the perspective of microbial diversity, the dominant bacteria genera in each group were Lactobacillus, Pantoea, Enterococcus and Pseudomonas. However, mixed fermentation decreased the abundance of pathogenic bacteria, of which the abundance of Serratia was <0.1 %. In conclusion, mixed fermentation can significantly improve the quality of spicy cabbage and shorten the fermentation time. These findings laid the theoretical foundation for the industrial production of high-quality spicy cabbage.


Subject(s)
Brassica , Fermentation , Fermented Foods , Food Microbiology , Leuconostoc mesenteroides , Brassica/microbiology , Leuconostoc mesenteroides/metabolism , Fermented Foods/microbiology , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/classification , Taste , Biodiversity
3.
Nutrients ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38674869

ABSTRACT

The study explored the potential protective impact of the probiotic fungus Eurotium amstelodami in Fuzhuan brick tea on ulcerative colitis, along with the underlying mechanism. A spore suspension of E. amstelodami was administered to C57BL/6 mice to alleviate DSS-induced colitis. The findings indicated that administering E. amstelodami evidently enhanced the ultrastructure of colonic epithelium, showing characteristics such as enhanced TJ length, reduced microvilli damage, and enlarged intercellular space. After HLL supplementation, the activation of the liver inflammation pathway, including TLR4/NF-kB and NLRP3 inflammasome caused by DSS, was significantly suppressed, and bile acid metabolism, linking liver and gut, was enhanced, manifested by restoration of bile acid receptor (FXR, TGR5) level. The dysbiosis of the gut microbes in colitis mice was also restored by HLL intervention, characterized by the enrichment of beneficial bacteria (Lactobacillus, Bifidobacterium, Akkermansia, and Faecalibaculum) and fungi (Aspergillus, Trichoderma, Wallemia, Eurotium, and Cladosporium), which was closely associated with lipid metabolism and amino acid metabolism, and was negatively correlated with inflammatory gene expression. Hence, the recovery of gut microbial community structure, implicated deeply in the inflammatory index and metabolites profile, might play a crucial role in the therapeutic mechanism of HLL on colitis.


Subject(s)
Dextran Sulfate , Eurotium , Gastrointestinal Microbiome , Mice, Inbred C57BL , Tea , Animals , Gastrointestinal Microbiome/drug effects , Mice , Tea/chemistry , Male , Probiotics/pharmacology , Colitis/chemically induced , Dysbiosis , Colon/drug effects , Colon/metabolism , Colon/pathology , Liver/metabolism , Liver/drug effects , Liver/pathology , Disease Models, Animal , Colitis, Ulcerative/chemically induced , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
4.
J Am Chem Soc ; 146(15): 10868-10874, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573037

ABSTRACT

Liquid water provides the largest hydrogen reservoir on the earth's surface. Direct utilization of water as a source of hydrogen atoms and molecules is fundamental to the evolution of the ecosystem and industry. However, liquid water is an unfavorable electron donor for forming these hydrogen species owing to its redox inertness. We report oil-mediated electron extraction from water microdroplets, which is easily achieved by ultrasonically spraying an oil-water emulsion. Based on charge measurement and electron paramagnetic resonance spectroscopy, contact electrification between oil and a water microdroplet is demonstrated to be the origin of electron extraction from water molecules. This contact electrification results in enhanced charge separation and subsequent mutual neutralization, which enables a ∼13-fold increase of charge carriers in comparison with an ultrapure water spray, leading to a ∼16-fold increase of spray-sourced hydrogen that can hydrogenate CO2 to selectively produce CO. These findings emphasize the potential of charge separation enabled by spraying an emulsion of liquid water and a hydrophobic liquid in driving hydrogenation reactions.

5.
Cell Rep ; 43(3): 113959, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483903

ABSTRACT

The extrinsic diet and the intrinsic developmental programs are intertwined. Although extensive research has been conducted on how nutrition regulates development, whether and how developmental programs control the timing of nutritional responses remain barely known. Here, we report that a developmental timing regulator, BLMP-1/BLIMP1, governs the temporal response to dietary restriction (DR). At the end of larval development, BLMP-1 is induced and interacts with DR-activated PHA-4/FOXA, a key transcription factor responding to the reduced nutrition. By integrating temporal and nutritional signaling, the DR response regulates many development-related genes, including gska-3/GSK3ß, through BLMP-1-PHA-4 at the onset of adulthood. Upon DR, a precocious activation of BLMP-1 in early larval stages impairs neuronal development through gska-3, whereas the increase of gska-3 by BLMP-1-PHA-4 at the last larval stage suppresses WNT signaling in adulthood for DR-induced longevity. Our findings reveal a temporal checkpoint of the DR response that protects larval development and promotes adult health.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caloric Restriction , Gene Expression Regulation , Longevity/genetics , Transcription Factors/metabolism , Wnt Signaling Pathway
6.
J Am Chem Soc ; 146(13): 9036-9044, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507821

ABSTRACT

Two-dimensional conductive metal-organic frameworks (2D c-MOFs), which feature high electrical conductivity and large charge carrier mobility, hold great promise in electronics and optoelectronics. Nevertheless, the limited solubility of commonly used planar ligands inevitably brings challenges in synthesis and purification and causes laborious coordination conditions for screening. Moreover, most reported 2D c-MOFs are polycrystalline powders with relatively low crystallinity and irregular morphology, hindering the unveiling of the detailed structure-function relationship. Herein, we developed a "rotor-stator" molecular design strategy to construct 2D c-MOFs using a delicately designed nonplanar biscarbazole ligand (8OH-DCB). Benefiting from the special "rotor-stator" structure of the ligand, crystals of Cu-DCB-MOF were successfully prepared, allowing for the precise determination of their crystal structure. Interestingly, the crystals of Cu-DCB-MOF can be obtained in various organic solvents, indicating excellent solvent compatibility. The versatility of the "rotor-stator" molecular design strategy was further demonstrated by another two new ligands with a "rotor-stator" structure, and afford corresponding 2D c-MOF crystals (Cu-DCBT-MOF and Cu-DCBBT-MOF). The current work presents a facile approach toward the rational design and direct construction of highly crystalline 2D c-MOFs using nonplanar ligands.

7.
Compr Rev Food Sci Food Saf ; 23(1): e13257, 2024 01.
Article in English | MEDLINE | ID: mdl-38284611

ABSTRACT

Cow milk is a major allergenic food. The potential prevention and treatment effects of lactic acid bacteria (LAB)-fermented dairy products on allergic symptoms have garnered considerable attention. Cow milk allergy (CMA) is mainly attributed to extracellular and/or cell envelope proteolytic enzymes with hydrolysis specificity. Numerous studies have demonstrated that LAB prevents the risk of allergies by modulating the development and regulation of the host immune system. Specifically, LAB and its effectors can enhance intestinal barrier function and affect immune cells by interfering with humoral and cellular immunity. Fermentation hydrolysis of allergenic epitopes is considered the main mechanism of reducing CMA. This article reviews the linear epitopes of allergens in cow milk and the effect of LAB on these allergens and provides insight into the means of predicting allergenic epitopes by conventional laboratory analysis methods combined with molecular simulation. Although LAB can reduce CMA in several ways, the mechanism of action remains partially clarified. Therefore, this review additionally attempts to summarize the main mechanism of LAB fermentation to provide guidance for establishing an effective preventive and treatment method for CMA and serve as a reference for the screening, research, and application of LAB-based intervention.


Subject(s)
Cultured Milk Products , Lactobacillales , Milk Hypersensitivity , Animals , Cattle , Female , Allergens/analysis , Fermentation , Milk Hypersensitivity/prevention & control , Epitopes
8.
Food Chem X ; 20: 100911, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144817

ABSTRACT

Milk allergy is one of the most common food allergies, in which αS-casein is the major milk allergen. Under optimized conditions, mixed starter (containing Lactobacillus plantarum 7-2 and commercial starter) effectively degraded αS-casein of skimmed milk and reduced the pressure of stomach digestion. The fermented milk prepared by mixed starter was determined by ELISA, the antigenicity of αS-casein was reduced by 77.53%. Compared with the fermented milk prepared by commercial starter, label-free quantitative proteomics demonstrated that the mixed starter more efficiently degraded the epitopes of major milk allergens and influenced the digestion pattern of the fermented milk. Therefore, L. plantarum 7-2 shows positive potential in reducing the antigenicity of αS-casein and others. In addition, this study predicted that the new epitopes produced in the fermentation process could induce immunity using molecular simulation.

9.
Heliyon ; 9(12): e22852, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125520

ABSTRACT

Science popularization is not only a prerequisite for national development, but also an effective means of enhancing citizens' personal quality. All sectors of society, represented by colleges and universities, bear the responsibility of promoting popular science. The integration of popular science and tourism in popular science tourism serves to advance both the field of popular science and the tourism industry simultaneously. The Guangzhou Higher Education Mega Center (HEMC) possesses abundant resources for science popularization and has the potential to develop popular science tourism, yet its current development in this area remains insufficient. This study utilizes Guangzhou HEMC as a case study and modifies the American Customer Satisfaction Index model by incorporating relevant questions pertaining to popular science tourism. A total of 280 valid questionnaires were collected through surveying, which were then analyzed to measure tourist satisfaction using the Tourist Satisfaction Index. The partial least squares structural equation model was employed for analysis, and on the basis of calculation results, the IPA map was constructed. The research revealed that tourists' satisfaction with popular science tourism at Guangzhou HEMC was suboptimal. Among the factors correlating to satisfaction, expectations, quality, and price are all important factors to consider when making a purchase decision; however, prioritizing expectations and quality can lead to greater satisfaction in the long run. Therefore, there is still ample room for improvement in the popular science tourism of HEMC Guangzhou. This can be achieved by intensifying publicity efforts, enhancing infrastructure, improving the quality and safety of catering services, strengthening the introduction and construction of popular science content, as well as appropriately reducing the price of popular science products and services.

10.
Eur J Pharmacol ; 959: 176090, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37778612

ABSTRACT

BACKGROUND: Intestinal ischemia/reperfusion injury (IRI) is a multifactorial, complex pathophysiological process in clinical settings. In recent years, intestinal IRI has received increasing attention due to increased morbidity and mortality. To date, there are no effective treatments. Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, has been demonstrated to be effective against intestinal IRI. In this systematic review and meta-analysis, we evaluated the efficacy and potential mechanisms of DEX as a treatment for intestinal IRI in animal models. METHODS: Five databases (PubMed, Embase, Web of Science, Cochrane Library, and Scopus) were searched until March 15, 2023. Using the SYRCLE risk bias tool, we assessed methodological quality. Statistical analysis was conducted using STATA 12 and R 4.2.2. We analyzed the related outcomes (mucosa damage-related indicators; inflammation-relevant markers, oxidative stress markers) relied on the fixed or random-effects models. RESULTS: There were 15 articles including 18 studies included, and 309 animals were involved in the studies. Compared to the model groups, DEX improved intestinal IRI. DEX decreased Chiu's score and serum diamine oxidase (DAO) level. DEX reduced the level of inflammation-relevant markers (interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α). DEX also improved oxidative stress (decreased malondialdehyde (MDA), increased superoxide dismutase (SOD)). CONCLUSIONS: DEX's effectiveness in ameliorating intestinal IRI has been demonstrated in animal models. Antioxidation, anti-inflammation, anti-apoptotic, anti-pyroptosis, anti-ferroptosis, enhancing mitophagy, reshaping the gut microbiota, and gut barrier protection are possible mechanisms. However, in light of the heterogeneity and methodological quality of these studies, further well-designed preclinical studies are warranted before clinical implication.


Subject(s)
Dexmedetomidine , Reperfusion Injury , Rats , Animals , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Rats, Sprague-Dawley , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Reperfusion Injury/pathology , Inflammation/drug therapy , Ischemia/drug therapy
11.
Mikrochim Acta ; 190(10): 393, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37712989

ABSTRACT

The great selectivity and trans-cleavage activity of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a had been coupled with high amplification efficiency of hybridization chain reaction (HCR) and magnetic-assisted enrichment, high sensitivity of electrochemiluminescence (ECL) detection to develop an ultra-sensitive biosensor for microRNA-21 (miRNA-21). The CRISPR/Cas13a was used to recognize target RNA with high specificity and performed the trans-cleavage activity. An initiation strand was generated to bind to the probe on the surface of nanomagnetic beads and then trigged HCR to produce long double-strand DNAs (dsDNAs) to realize signal amplification. Ru(phen)32+ can be inserted in the groove of the dsDNAs and acts as the ECL indicator, which can be separated through magnetic enrichment and allowed the platform to reduce the signal background. Under the optimized conditions, there is a good linear correlation between the ECL intensity and the logarithm of miRNA-21 concentration in the range 1 fM-10 nM; the limit of detection (LOD) was 0.53 fM. The proposed system was applied to detect miRNA-21 from the urine of acute kidney injury (AKI) patients with good results.


Subject(s)
Body Fluids , MicroRNAs , Humans , Clustered Regularly Interspaced Short Palindromic Repeats , Nucleic Acid Hybridization , Magnetic Phenomena
12.
Opt Express ; 31(19): 30066-30078, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710557

ABSTRACT

The ray-mapping method has been widely used for designing freeform illumination lenses. However, in non-paraxial or off-axis situations, it remains challenging to obtain an integrable ray-mapping, often requiring a complex iterative correction process for the initial mapping. To address this challenge, we propose an extended ray-mapping method that incorporates differentiable ray-tracing into the design pipeline of the ray-mapping method. This enables accurate surface construction according to ray-mapping and efficient shape correction based on irradiance distribution. The proposed method involves two optimization stages. In the first stage, the freeform surface is preliminarily optimized to closely match the optimal transport mapping. The obtained freeform surface is then further optimized in the second stage to minimize the divergence between the target and simulated irradiance distributions. Additionally, the mean curvature of the freeform surface is also constrained in the second stage to facilitate the fabrication of the final freeform surface. Non-paraxial illumination lenses and off-axis illumination lenses have been designed using the proposed method within ten minutes, and simulations demonstrate that the approach is effective and robust.

13.
Mediators Inflamm ; 2023: 5007488, 2023.
Article in English | MEDLINE | ID: mdl-37484603

ABSTRACT

Interstitial inflammation is an important mechanism of pathological damage in renal injury caused by hyperuricemia. Protease-activated receptor-2 (PAR2) is a class of targets that act upstream of the PI3K/AKT/NF-κB pathway and is involved in various inflammatory diseases. We induced a hyperuricemia model in rats by adenine and ethambutol gavage in an in vivo experiment. We demonstrated that PAR2 and PI3K/AKT/NF-κB pathway expression were significantly upregulated in renal tissues, with massive inflammatory cell infiltration in the renal interstitium and renal tissue injury. Treating hyperuricemic rats with AZ3451, a selective metabotropic antagonist of PAR2, we demonstrated that PAR2 antagonism inhibited the PI3K/AKT/NF-κB pathway and attenuated tubular dilation and tubulointerstitial inflammatory cell infiltration. The phospholipid metabolism profiles provided a perfect separation between the normal and hyperuricemic rats. In addition, we also found that AZ3451 can affect phospholipid metabolism. Our work suggests that PAR2 may mediate hyperuricemia-mediated renal injury by activating the PI3K/AKT/NF-κB pathway. The PAR2 antagonist AZ3451 may be a promising therapeutic strategy for hyperuricemia-induced inflammatory responses.


Subject(s)
Hyperuricemia , Rats , Animals , Hyperuricemia/drug therapy , NF-kappa B/metabolism , Signal Transduction/physiology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, PAR-2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Kidney/metabolism , Phospholipids/metabolism , Phospholipids/therapeutic use
14.
Front Psychol ; 14: 1133480, 2023.
Article in English | MEDLINE | ID: mdl-37351437

ABSTRACT

Purpose: Drawing from identity threat theory, this study aims to understand how and when employee voice can lead to abusive supervision. It proposes and examines a theoretical model in which employee voice is linked to abusive supervision through the mediating effect of leader identity threat. Methods: We conducted a field study by collecting data from 93 supervisors and 533 subordinates in China at two different points in time. A structural equation model and Mplus software were used to examine the direct relationship between employee voice and abusive supervision, as well as the mediating effect of leader identity threat and the moderating effect of supervisor traditionality. Results: Our results showed that employee voice was positively related to leader identity threat and had an indirect effect on abusive supervision via leader identity threat. In addition, we found that supervisor traditionality moderated the relationship between employee voice and leader identity threat. Subordinates' voice increased perceptions of leader identity threat among supervisors with high traditionality, whereas supervisors with low traditionality did not make this association. Finally, the indirect effect of employee voice on abusive supervision via leader identity threat was moderated by supervisor traditionality. Discussion: First, this study broadens our understanding of the antecedents of abusive supervision by proposing that employee voice may induce abusive supervision. Second, it develops an identity threat perspective to explain why employee voice is positively related to abusive supervision. Finally, it enriches the research on implicit leadership theories by proposing that supervisors' cultural values can also influence supervisors' sense-making of subordinates' behaviors.

15.
Angew Chem Int Ed Engl ; 62(18): e202215584, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36840681

ABSTRACT

Covalent organic frameworks (COFs), thanks to their adjustable porous structure and abundant build-in functional motifs, have been recently regarded as promising electrode materials for a variety of batteries. There still remain grand opportunities to further utilizing their merits for developing advanced COFs-based batteries. In this paper, we propose a hybrid acid/alkali all-COFs battery by coupling pyrene-4,5,9,10-tetraone based COF cathode with anthraquinone based COF anode. In such a hybrid acid/alkali all-COFs battery, the cathodic COF favorably works in acid with a relatively positive potential, while the anodic COF preferably runs in alkali with a relatively negative potential. It thus can deliver a decently high discharge capacity of 92.97 mAh g-1 with a wide voltage window of 2.0 V, and exhibit high energy density of 74.2 Wh kg-1 along with a considerable cyclic stability over 300 cycles. The development of the proof-of-concept all-COFs battery may drive forward the improvement of newly cost-effective and performance-reliable energy storage devices.

16.
Talanta ; 257: 124367, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36841016

ABSTRACT

Hyaluronidase (HAase) is a potential tumor biomarker for diseases of the digestive tract and nervous system, the development of simple and sensitive techniques for HAase determination is urgent needed. Gold nanorods (Au NRs) can be etched by H2O2 with high efficiency and display color changing. In this work, a HAase-responsive hydrogel system had been designed and the amount of H2O2 spilled from the system had a close relationship with the amount of HAase, then the spilled H2O2 had been applied to etch Au NRs. The color change of the solution was used to realize semi-quantitative determination of HAase. Furthermore, the longitudinal peak shift of Au NRs had a linear correlation with the concentration of HAase in the range of 10-60 U/mL (within 40 min) and the limit of detection (LOD) was 3.8 U/mL (S/N = 3), which can be used to realize accurate quantitative analysis of HAase. The proposed method has been applied to monitor HAase in serum of pancreatic cancer patients with satisfied results.


Subject(s)
Biosensing Techniques , Nanotubes , Humans , Hyaluronoglucosaminidase , Hydrogen Peroxide , Gold , Hydrogels , Biosensing Techniques/methods
17.
Foods ; 11(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36553793

ABSTRACT

As the main allergens in milk, whey proteins are heat-sensitive proteins and are widespread in dairy products and items in which milk proteins are involved as food additives. The present work sought to investigate the effect of heating sterilization on the allergenicity of α-lactalbumin (α-LA) and ß-lactoglobulin (ß-LG), the main composite and allergen in whey protein isolate (WPI), by combining molecular dynamics with experimental techniques for detecting the spatial structure and IgE binding capacity. The structure of WPI was basically destroyed at heat sterilization conditions of 95 °C for 5 min and 65 °C for 30 min by SDS-PAGE analysis and spectroscopic analysis. In addition, α-lactalbumin (α-LA) may be more sensitive to temperature, resulting in exposure to allergic epitopes and increasing the allergic potential, while the binding capacity of ß-lactoglobulin (ß-LG) to IgE was reduced under 65 °C for 30 min. By the radius of gyration (Rg) and root-mean-square deviation (RMSD) plots calculated in molecular dynamics simulations, α-LA was less structurally stable at 368 K, while ß-LG remained stable at higher temperatures, indicating that α-LA was more thermally sensitive. In addition, we observed that the regions significantly affected by temperatures were associated with the capacity of allergic epitopes (α-LA 80-101 and ß-LG 82-93, 105-121) to bind IgE through root-mean-standard fluctuation (RMSF) plots, which may influence the two major allergens. We inferred that these regions are susceptible to structural changes after sterilization, thus affecting the allergenicity of allergens.

18.
Ultrason Sonochem ; 90: 106217, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36347155

ABSTRACT

The effects of high-intensity ultrasound on the physicochemical and gelling properties of Litopenaeus vannamei (L. vannamei) myofibrillar protein (MP) were investigated. MP solutions were subjected to ultrasound treatment (power 100 W, 300 W, and 500 W). It was found that the carbonyl and free amino contents of MP increased significantly with increasing ultrasound power, accompanied by enhanced emulsification properties. The increase of free radical and carbonyl content indicated that ultrasound induced the oxidation of MP. With the increase of ultrasound power, it was found that the total sulfhydryl content of the shrimp MP decreased, but the surface hydrophobicity increased significantly, which might be closely related to the conformational changes of MP. Meanwhile, a significant increase of ß-sheet but a decrease of α-helix in the secondary structure of MP was observed with increasing ultrasound power, indicating that ultrasound treatment induced the stretching and flexibility of MP molecules. SDS-PAGE showed that L. vannamei MP consisted of myosin heavy chain, actin, myosin light chain, paramyosin and tropomyosin. Ultrasound treatment could lead to some degree of oxidative aggregation of MP. The results of rheological properties indicated that ultrasound treatment enhanced the viscoelasticity of MP and further improved the gel strength of MP gel. This study can provide a theoretical basis for the functional modification of shrimp MP and the processing of its surimi products.


Subject(s)
Penaeidae , Animals , Gels/chemistry , Hydrophobic and Hydrophilic Interactions , Rheology , Oxidation-Reduction
19.
Sensors (Basel) ; 22(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015933

ABSTRACT

The cold atom gravimeter (CAG) has proven to be a powerful quantum sensor for the high-precision measurement of gravity field, which can work stably for a long time in the laboratory. However, most CAGs cannot operate in the field due to their complex structure, large volume and poor environmental adaptability. In this paper, a home-made, miniaturized CAG is developed and a truck-borne system based on it is integrated to measure the absolute gravity in the field. The measurement performance of this system is evaluated by applying it to measurements of the gravity field around the Xianlin reservoir in Hangzhou City of China. The internal and external coincidence accuracies of this measurement system were demonstrated to be 35.4 µGal and 76.7 µGal, respectively. Furthermore, the theoretical values of the measured eight points are calculated by using a forward modeling of a local high-resolution digital elevation model, and the calculated values are found to be in good agreement with the measured values. The results of this paper show that this home-made, truck-borne CAG system is reliable, and it is expected to improve the efficiency of gravity surveying in the field.

20.
Front Genet ; 13: 908289, 2022.
Article in English | MEDLINE | ID: mdl-35783260

ABSTRACT

RNA, like DNA and proteins, has been discovered to undergo dynamic and reversible chemical alterations, increasing the diversity and functional complexity of the molecule. N-6-methyladenosine (m6A) RNA methylation serves as a bridge between transcription and translation and is critical for many diseases' progression. There is a complex interrelationship between m6A modifications and other epigenetic modifications. Their crosstalk significantly affects transcriptional outputs, translation, recruitment of chromatin modifiers, as well as the deployment of the m6A methyltransferase complex at target sites. This article outlines the potential function of m6A RNA methylation in epigenetics and summarizes its interactions with histone modifications.

SELECTION OF CITATIONS
SEARCH DETAIL
...