Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 26: 101075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736614

ABSTRACT

Regenerating skin nerves in deep burn wounds poses a significant clinical challenge. In this study, we designed an electrospun wound dressing called CuCS/Cur, which incorporates copper-doped calcium silicate (CuCS) and curcumin (Cur). The unique wound dressing releases a bioactive Cu2+-Cur chelate that plays a crucial role in addressing this challenge. By rebuilding the "factory" (hair follicle) responsible for producing nerve cells, CuCS/Cur induces a high expression of nerve-related factors within the hair follicle cells and promotes an abundant source of nerves for burn wounds. Moreover, the Cu2+-Cur chelate activates the differentiation of nerve cells into a mature nerve cell network, thereby efficiently promoting the reconstruction of the neural network in burn wounds. Additionally, the Cu2+-Cur chelate significantly stimulates angiogenesis in the burn area, ensuring ample nutrients for burn wound repair, hair follicle regeneration, and nerve regeneration. This study confirms the crucial role of chelation synergy between bioactive ions and flavonoids in promoting the regeneration of neuralized skin through wound dressings, providing valuable insights for the development of new biomaterials aimed at enhancing neural repair.

2.
Regen Biomater ; 11: rbae028, 2024.
Article in English | MEDLINE | ID: mdl-38605852

ABSTRACT

Peri-implant lesion is a grave condition afflicting numerous indi-viduals with dental implants. It results from persistent periodontal bacteria accumulation causing inflammation around the implant site, which can primarily lead to implant loosening and ultimately the implant loss. Early-stage peri-implant lesions exhibit symptoms akin to gum disease, including swelling, redness and bleeding of the gums surrounding the implant. These signs indicate infection and inflammation of the peri-implant tissues, which may result in bone loss and implant failure. To address this problem, a thermionic strategy was applied by designing a cuprorivaite-hardystonite bioceramic/alginate composite hydrogel with photothermal and Cu/Zn/Si multiple ions releasing property. This innovative approach creates a thermionic effect by the release of bioactive ions (Cu2+ and Zn2+ and SiO32-) from the composite hydrogel and the mild heat environment though the photothermal effect of the composite hydrogel induced by near-infrared light irradiation. The most distinctive advantage of this thermionic effect is to substantially eliminate periodontal pathogenic bacteria and inhibit inflammation, while simultaneously enhance peri-implant osseointegration. This unique attribute renders the use of this composite hydrogel highly effective in significantly improving the survival rate of implants after intervention in peri-implant lesions, which is a clinical challenge in periodontics. This study reveals application potential of a new biomaterial-based approach for peri-implant lesion, as it not only eliminates the infection and inflammation, but also enhances the osteointegration of the dental implant, which provides theoretical insights and practical guidance to prevent and manage early-stage peri-implant lesion using bioactive functional materials.

3.
Acta Biomater ; 177: 62-76, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38237713

ABSTRACT

The existing strategies for myocardial infarction therapy mainly focus on reinstating myocardial blood supply, often disregarding the intrinsic and intricate microenvironment created by elevated levels of reactive oxygen species (ROS) that accompanies myocardial infarction. This microenvironment entails cardiomyocytes apoptosis, substantial vascular cell death, excessive inflammatory infiltration and fibrosis. In such situation, the present study introduces a zinc-based nanozyme injectable multifunctional hydrogel, crafted from ZIF-8, to counteract ROS effects after myocardial infarction. The hydrogel exhibits both superoxide dismutase (SOD)-like and catalase (CAT)-like enzymatic activities, proficiently eliminating surplus ROS in the infarcted region and interrupting ROS-driven inflammatory cascades. Furthermore, the hydrogel's exceptional immunomodulatory ability spurs a notable transformation of macrophages into the M2 phenotype, effectively neutralizing inflammatory factors and indirectly fostering vascularization in the infarcted region. For high ROS and demanding for zinc of the infarcted microenvironment, the gradual release of zinc ions as the hydrogel degrades further enhances the bioactive and catalytic performance of the nanozymes, synergistically promoting cardiac function post myocardial infarction. In conclusion, this system of deploying catalytic nanomaterials within bioactive matrices for ROS-related ailment therapy not only establishes a robust foundation for biomedical material development, but also promises a holistic approach towards addressing myocardial infarction complexities. STATEMENT OF SIGNIFICANCE: Myocardial infarction remains the leading cause of death worldwide. However, the existing strategies for myocardial infarction therapy mainly focus on reinstating myocardial blood supply. These therapies often ignore the intrinsic and intricate microenvironment created by elevated levels of reactive oxygen species (ROS). Hence, we designed an injectable Zn-Based nanozyme hydrogel with ROS scavenging activity for myocardial infarction therapy. ALG-(ZIF-8) can significantly reduce ROS in the infarcted area and alleviate the ensuing pathological process. ALG-(ZIF-8) gradually releases zinc ions to participate in the repair process and improves cardiac function. Overall, this multifunctional hydrogel equipped with ZIF-8 makes full use of the characteristics of clearing ROS and slowly releasing zinc ions, and we are the first to test the therapeutic efficacy of Zinc-MOFs crosslinked-alginate hydrogel for myocardial infarction.


Subject(s)
Hydrogels , Myocardial Infarction , Humans , Hydrogels/pharmacology , Hydrogels/therapeutic use , Reactive Oxygen Species , Myocardial Infarction/therapy , Zinc/pharmacology , Zinc/therapeutic use , Ions
4.
Environ Sci Technol ; 57(31): 11373-11388, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37470763

ABSTRACT

The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.


Subject(s)
Nanostructures , Phosphorus , Humans , Phosphorus/chemistry , Nanostructures/toxicity , Biological Transport
5.
Bioact Mater ; 24: 81-95, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36582348

ABSTRACT

A nanocomposite microneedle (ZCQ/MN) patch containing copper/zinc dual-doped mesoporous silica nanoparticles loaded with quercetin (ZCQ) was developed as a combination therapy for androgenic alopecia (AGA). The degradable microneedle gradually dissolves after penetration into the skin and releases the ZCQ nanoparticles. ZCQ nanoparticles release quercetin (Qu), copper (Cu2+) and zinc ions (Zn2+) subcutaneously to synergistically promote hair follicle regeneration. The mechanism of promoting hair follicle regeneration mainly includes the regulation of the main pathophysiological phenomena of AGA such as inhibition of dihydrotestosterone, inhibition of inflammation, promotion of angiogenesis and activation of hair follicle stem cells by the combination of Cu2+ and Zn2+ ions and Qu. This study demonstrates that the systematic intervention targeting different pathophysiological links of AGA by the combination of organic drug and bioactive metal ions is an effective treatment strategy for hair loss, which provides a theoretical basis for development of biomaterial based anti-hair loss therapy.

6.
Front Bioeng Biotechnol ; 10: 923383, 2022.
Article in English | MEDLINE | ID: mdl-35832409

ABSTRACT

Limited load capacity is the bottleneck for the practical application of mobile multi-joint legged robots. And improving the efficiency of the drive system is a key factor in improving the load capacity. To improve the efficiency of mobile robots, in this paper, a new kind of actuator that imitates the driving mechanism of human muscles is innovatively designed and validated through experiments. The proposed actuator consists of a single power source and multiple plunger pistons, and imitates the configuration of a human muscle, to improve the efficiency and load capacities. The design proposed here represents a new class of driving methods. The actuator selects the most appropriate combination of the effective areas of plunger pistons like the human muscles, to ensure that the maximal output force aligns with the load force. To validate that the new actuator can improve the efficiency of hydraulic systems of mobile robots, a robotic arm incorporating a prototype of the new actuator was designed. The proposed system was validated through a series of experiments. The experiments show that the bionic actuator can adjust the flow rate of the system input by adjusting the number and size of the motion units involved in the work, and with the change in load force, it changes the output force by recruiting different motion units, which indicates good controllability. The results reported herein reveal that the application of bionics to the design of robotic actuator can significantly improve the efficiency and overall performance of the robots, and this biomimetic approach can be applied to a variety of robots.

SELECTION OF CITATIONS
SEARCH DETAIL
...