Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Dig Dis Sci ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722412
2.
Nanomicro Lett ; 16(1): 79, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189993

ABSTRACT

Black phosphorus with a superior theoretical capacity (2596 mAh g-1) and high conductivity is regarded as one of the powerful candidates for lithium-ion battery (LIB) anode materials, whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs. By contrast, the exfoliated two-dimensional phosphorene owns negligible volume variation, and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics, while its positive influence has not been discussed yet. Herein, a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage. The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions, but also endow the nanocomposite with favorable piezoelectricity, thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator. By waltzing with the MXene framework, the optimized electrode exhibits enhanced kinetics and stability, achieving stable cycling performances for 1,000 cycles at 2 A g-1, and delivering a high reversible capacity of 524 mAh g-1 at - 20 â„ƒ, indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.

3.
Talanta ; 270: 125634, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38215585

ABSTRACT

Over the past decade, miniaturized optical emission spectrometry (OES) systems utilizing atmospheric pressure plasmas (APPs) as radiation sources have exhibited impressive capabilities in trace heavy metal analysis. As the core of the analytical system, APPs sources possess unique properties such as compact size, light weight, low energy requirement, ease of fabrication, and relatively low manufacturing cost. This critical review focuses on recent progress of APP-based OES systems employed for the determination of heavy metals. Influences of technical details including the sample introduction manner, the sampling volume, the sample flow rate, the pH of the solutions on the plasma stability and the intensity of analytical signals are comprehensively discussed. Furthermore, the review emphasizes the analytical challenges faced by these techniques and highlights the opportunities for further development in the field of heavy metal detection.

4.
Adv Mater ; 35(6): e2208615, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36401606

ABSTRACT

Transition metal dichalcogenides (TMDs) are regarded as promising cathode materials for zinc-ion storage owing to their large interlayer spacings. However, their capabilities are still limited by sluggish kinetics and inferior conductivities. In this study, a facile one-pot solvothermal method is exploited to vertically plant piezoelectric 1T MoSe2  nanoflowers on carbon cloth (CC) to fabricate crystallographically textured electrodes. The self-built-in electric field owing to the intrinsic piezoelectricity during the intercalation/deintercalation processes can serve as an additional piezo-electrochemical coupling accelerator to enhance the migration of Zn2+ . Moreover, the expanded interlayer distance (9-10 Å), overall high hydrophilicity, and conductivity of the 1T phase MoSe2  also promoted the kinetics. These advantages endow the tailored 1T MoSe2 /CC nanopiezocomposite with feasible Zn2+ diffusion and desirable electrochemical performances at room and low temperatures. Moreover, 1T MoSe2 /CC-based quasi-solid-state zinc-ion batteries are constructed to evaluate the potential of the proposed material in low-temperature flexible energy storage devices. This work expounds the positive effect of intrinsic piezoelectricity of TMDs on Zn2+ migration and further explores the availabilities of TMDs in low-temperature wearable energy-storage devices.

5.
Front Mol Biosci ; 9: 859645, 2022.
Article in English | MEDLINE | ID: mdl-35813827

ABSTRACT

Background: The pathogenesis of ulcerative colitis (UC) is closely related to immunity. The immune characteristic differences between active UC (UCa) and inactive UC (UCin) have not been completely explained. Mass cytometry (CyTOF) and single-cell RNA sequencing (scRNA-seq) were used to analyze the immune cells of UCa, UCin and healthy control (HC) subjects to determine the specific immune characteristics. Methods: The immune cell subsets among UCa, UCin, HC were distinguished using CyTOF analysis. scRNA-seq analysis was used to validate the results of CyTOF. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to understand the roles of differential immune cell subsets. Results: After CyTOF analysis and validation of scRNA-seq analysis, differential immune cell subsets mainly contained TNF+IL-17A++ effector memory (EM) Tregs, CXCR3+CTLA4+ EM Tregs, CXCR3++CCR7+ B cells, HLA-DR+CCR7+ dendritic cells (DCs) and CTLA-4+ natural killer (NK) cells. In comparison to HC, CCR6+TNF+CD161+ EM T cells were highly enriched in UCa and UCin. Besides, UCa was characterized by an increase in CD38+TNF+ EM Tregs, CXCR3+CCR4+ naïve B cells, HLA-DR+CD14+IL21+ macrophages/monocytes, HLA-DR+CCR7+ DCs, AHR+CD14+ cytotoxic NK (cNK) cells and CD8A+IFNG+ cNK cells. Decreases in CD38+CD27+ plasmablasts, CXCR3+CD38+ regulatory NK cells, and CXCR3+CCR7+ tolerant NK cells in UCa were discovered. Conclusions: Novel immune cell subsets which was used to distinguish UCa, UCin and HC were identified. This information might be utilized to distinguish the patients with UCa and UCin.

6.
Front Med (Lausanne) ; 9: 1064106, 2022.
Article in English | MEDLINE | ID: mdl-36714133

ABSTRACT

Objectives: For Crohn's disease (CD), the alternation of the active phase and inactive phase may be related to humoral immunity and cellular immunity. This study aims to understand the characteristics of immune cells in patients with active CD (CDa) and inactive CD (CDin). Methods: Mass cytometry (CyTOF) and single-cell RNA sequencing (scRNA-seq) data about CDa, CDin, and healthy control (HC) were included. CyTOF analysis was performed to capture gated subsets, including T cells, T regulatory (Treg) cells, B cells, innate immune cells, and natural killer (NK) cells. Differential analysis was used to identify different immune cell subsets among CDa, CDin, and HC. ScRNA-seq analysis was used to verify the results of CyTOF. CD-related signaling pathways were obtained using KEGG pathway enrichment analysis. CellChat analysis was used to infer the cell communication network among immune cell subsets. Results: Compared to patients with CDin, patients with CDa had higher abundances of CD16+CD38+CD4+CXCR3+CCR6+ naive T cells, HLA-DR+CD38+IFNγ+TNF+ effector memory (EM) T cells, HLA-DR+IFNγ+ naive B cells, and CD14++CD11C+IFNγ+IL1B+ monocytes. KEGG analysis showed the similarity of pathway enrichment for the earlier four subsets, such as thermogenesis, oxidative phosphorylation, and metabolic pathways. The patients with CDin were characterized by an increased number of CD16+CD56dimCD44+HLA-DR+IL22+ NK cells. Compared to HC, patients with CDa demonstrated a low abundance of HLA-DR+CCR6+ NK cells and a high abundance of FOXP3+CD44+ EM Tregs. CellChat analysis revealed the interaction network of cell subsets amplifying in CDa compared with CDin. Conclusion: Some immune subsets cells were identified for CDa and CDin. These cells may be related to the occurrence and development of CD and may provide assistance in disease diagnosis and treatment.

7.
Bioengineered ; 12(2): 10194-10202, 2021 12.
Article in English | MEDLINE | ID: mdl-34872447

ABSTRACT

Gastric cancer is one of the most common malignancy with a leading mortality rate worldwide. Despite the progress in the diagnosis and therapeutic strategy, the associated mortality is still growing. It is of great significance to understand molecular mechanisms of the development of gastric cancer. Glycolysis is a main source of ATP provision for cancer cells including gastric cancer, and targeting glycolysis is a promising therapeutic strategy. Centromere protein U (CENPU) has been found to be overexpressed in many types of cancer. Downregulation of CENPU suppresses the proliferation and invasion of cancer cells. High mobility group box 2 (HMGB2) is identified as a biomarker to diagnose of gastric cancer. Knockdown of HMGB2 inhibits proliferation and glycolysis in gastric cancer cells. In this work, we identified that CENPU was upregulated in gastric cancer. Knockdown of CENPU was able to suppress the proliferation and glycolysis of gastric cancer cells. Further the results showed that the anti-cancer effect of CENPU was HMGB2-dependent. Taken together, CENPU is an upstream factor of HMGB2, which regulates proliferation and glycolysis of gastric cancer.


Subject(s)
Cell Cycle Proteins/metabolism , Glycolysis , HMGB2 Protein/metabolism , Histones/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Animals , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Histones/genetics , Humans , Mice , Stomach Neoplasms/genetics , Up-Regulation/genetics
8.
Vis Comput Ind Biomed Art ; 4(1): 20, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34269925

ABSTRACT

In recent years, simultaneous localization and mapping in dynamic environments (dynamic SLAM) has attracted significant attention from both academia and industry. Some pioneering work on this technique has expanded the potential of robotic applications. Compared to standard SLAM under the static world assumption, dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly. Therefore, dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments. Additionally, to meet the demands of some high-level tasks, dynamic SLAM can be integrated with multiple object tracking. This article presents a survey on dynamic SLAM from the perspective of feature choices. A discussion of the advantages and disadvantages of different visual features is provided in this article.

9.
ACS Appl Mater Interfaces ; 13(16): 19282-19290, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33866783

ABSTRACT

Daytime radiative cooling has attracted considerable attention recently due to its tremendous potential for passively exploiting the coldness of the universe as clean and renewable energy. Many advanced materials with novel photonic micro/nanostructures have already been developed to enable highly efficient daytime radiative coolers, among which the flexible hierarchical porous coatings (HPCs) are a more distinguished category. However, it is still hard to precisely control the size distribution of the randomized pores within the HPCs, usually resulting in a deficient solar reflection at the near-infrared optical regime under diverse fabrication conditions of the coatings. We report here a three-phase (i.e., air pore-phase, microsphere-phase, and polymer-phase) self-assembled hybrid porous composite coating, which dramatically increases the average solar reflectance and yields remarkable temperature drops of ∼10 and ∼ 30 °C compared to the ambient circumstance and black paint, respectively, according to the rooftop measurements. Mie theory and Monte Carlo simulations reveal the origin of the low reflectivity of as-prepared two-phase porous HPCs, and the optical cooling improvement of the three-phase porous composite coatings is attributed to the newly generated interfaces possessing the high scattering efficiency between the hierarchical pores and silica microspheres hybridized with appropriate mass fractions. As a result, the hybrid porous composite approach enhances the whole performance of the coatings, which provides a promising alternative to the flexible daytime radiative cooler.

10.
Chemosphere ; 261: 127674, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32758926

ABSTRACT

In this work, ß-FeOOH was synthesized and grown on carbon paper with the assistance of dopamine (PDA) via a facile hydrothermal method, producing ß-FeOOH self-supporting electrode eventually. Electrochemical anodic oxidation performance to methyl orange (MO) solution using ß-FeOOH anode was investigated and the major influencing factors such as current density, initial pH value and initial MO concentration on MO degradation efficiency were further explored. Experimental results suggested that 99.4% degradation rate of MO could be achieved only after 25 min electrolysis, its pseudo first-order reaction kinetic constant was 11.3 ⅹ 10-2 min-1 and the COD removal ratio was 37.3% after 120 min electrolysis under optimized conditions: current density was 10 mA cm-2, initial pH value was 3 and initial MO concentration was 10 mg L-1. At the same time, ß-FeOOH electrode also exhibited a high cycling stability and the MO removal ratio was still keeping at 84.9% after eight cycles. Moreover, this electrode showed efficient decomposition performance to multiple simulated pollutants, indicating the well potential practical application values of ß-FeOOH electrode. At last, the proposed degradation mechanism of MO was evaluated according to the analyzing results of UV-vis and HPLC-MS to MO solution under different degradation durations.


Subject(s)
Water Pollutants, Chemical/chemistry , Water Purification/methods , Azo Compounds , Electrodes , Electrolysis , Ferric Compounds/chemistry , Kinetics , Oxidation-Reduction , Water Pollutants, Chemical/analysis
11.
Ecotoxicol Environ Saf ; 189: 110045, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31816499

ABSTRACT

Phytotoxicity of cadmium (Cd) and its trophic transfer along a terrestrial food chain have been extensively investigated. However, few studies focused on the role of amendments on the trophic transfer of Cd and related mineral nutrients. In a 60-day pot experiment, soil Cd availability, accumulation of Cd, mineral nutrients (Ca and Si) in lettuce, and subsequent trophic transfer along the lettuce-snail system were investigated with or without 3% (w/w) soil amendment (biochar or micro-hydroxyapatite, µHAP). Soil CaCl2 extractable Cd (CdCaCl2) contents decreased by both amendments. µHAP amended soil increased the Freundlich sorption capacity of Cd2+ to a greater extent (15.9 mmol/kg) than biochar (12.6 mmol/kg). Cd, Ca and Si accumulation in lettuce tissues (roots and shoots) varied with amendment species and soil Cd levels. Linear regression analysis showed that root Cd contents are negatively correlated with root Ca and Si contents (r2 = 0.96, p < 0.05). But no significant correlation between shoot Cd and lettuce Ca and Si contents was found (p > 0.05). After 15 days snail feeding, nearly 90% content of Cd was found in snail viscera, while nearly 95% content of Ca was found in snail shells. Contents of Si distributed equally in snail tissues. Biomagnification of Cd, Ca and Si (TF > 1) was found in lettuce shoot - snail viscera system. Opposite tendency of TF variation between Cd and nutrient elements (Ca and Si) from shoots to snail tissues indicated that µHAP, rather than biochar, amendment is applicable to remediate soil Cd contamination in our study.


Subject(s)
Cadmium/analysis , Charcoal/chemistry , Lactuca/drug effects , Minerals/metabolism , Soil Pollutants/analysis , Soil/chemistry , Animals , Bioaccumulation , Cadmium/metabolism , Calcium/metabolism , Food Chain , Lactuca/metabolism , Silicon/metabolism , Snails/drug effects , Snails/metabolism , Soil Pollutants/metabolism
12.
Langmuir ; 31(36): 9771-80, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26307462

ABSTRACT

In this work, the biosensing and antibacterial capabilities of PVA-lysozyme microbubbles have been explored. Gas-filled PVA-lysozyme microbubbles with and without gold nanoparticles in the diameter range of 10 to 250 µm were produced using a single-step pressurized gyration process. Fluorescence microscopy showed the integration of gold nanoparticles on the shell of the microbubbles. Microbubbles prepared with gold nanoparticles showed greater optical extinction values than those without gold nanoparticles, and these values increased with the concentration of the gold nanoparticles. Both types of microbubbles showed antibacterial activity against Gram-negative Escherichia coli (E. coli), with the bubbles containing the gold nanoparticles performing better than the former. The conjugation of the microbubbles with alkaline phosphatase allowed the detection of pesticide paraoxon in aqueous solution, and this demonstrates the biosensing capabilities of these microbubbles.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biosensing Techniques , Muramidase/chemistry , Polyvinyl Alcohol/chemistry , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...