Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 695
Filter
1.
J Biochem Mol Toxicol ; 38(6): e23746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769694

ABSTRACT

To identify the role of enterotoxin-related genes in colorectal cancer (CRC) development and progression. Upregulated differentially expressed genes shared by three out of five Gene Expression Omnibus (GEO) data sets were included to screen the key enterotoxin-induced oncogenes (EIOGs) according to criteria oncogene definition, enrichment, and protein-protein interaction (PPI) network analysis, followed by prognosis survival, immune infiltration, and protential drugs analyses was performed via integration of RNA-sequencing data and The Cancer Genome Atlas-derived clinical profiles. We screened nine common key EIOGs from at least three GEO data sets. A Cox proportional hazards regression models verified that more alive cases, decreased overall survival, and highest 4-year survival prediction in CRC patients with high-risk score. Protein tyrosine phosphatase receptor type F polypeptide-interacting protein alpha-4 (PPFIA4), STY11, SCN3B, and SPTBN5 were shared in the same PPI network. Immune infiltration results showed that SCN3B and synaptotagmin 11 expression were obviously associated with B cell, macrophage, myeloid dendritic cell, neutrophils, and T cell CD4+ and CD8+ in both colon adenocarcinoma and rectal adenocarcinoma. CHIR-99021, MLN4924, and YK4-279 were identified as the potential drugs for treatment. Finally, upregulated EIOGs genes PPFIA4 and SCN3B were found in colon adenocarcinoma and PPFIA4 and SCN3B were proved to promote cell proliferation and migration in vitro. We demonstrated here that EIOGs promoting a malignancy phenotype was related with poor survival and prognosis in CRC, which might be served as novel therapeutic targets in CRC management.


Subject(s)
Colorectal Neoplasms , Enterotoxins , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Progression , Gene Expression Regulation, Neoplastic , Protein Interaction Maps
2.
Nat Commun ; 15(1): 3903, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724537

ABSTRACT

Tropical Cyclones (TCs) are devastating natural disasters. Analyzing four decades of global TC data, here we find that among all global TC-active basins, the South China Sea (SCS) stands out as particularly difficult ocean for TCs to intensify, despite favorable atmosphere and ocean conditions. Over the SCS, TC intensification rate and its probability for a rapid intensification (intensification by ≥ 15.4 m s-1 day-1) are only 1/2 and 1/3, respectively, of those for the rest of the world ocean. Originating from complex interplays between astronomic tides and the SCS topography, gigantic ocean internal tides interact with TC-generated oceanic near-inertial waves and induce a strong ocean cooling effect, suppressing the TC intensification. Inclusion of this interaction between internal tides and TC in operational weather prediction systems is expected to improve forecast of TC intensity in the SCS and in other regions where strong internal tides are present.

3.
World J Clin Cases ; 12(14): 2412-2419, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38765752

ABSTRACT

BACKGROUND: Rectal mucinous adenocarcinoma (MAC) is a rare pathological type of rectal cancer with unique pathological features and a poor prognosis. It is difficult to diagnose and treat early because of the lack of specific manifestations in some aspects of the disease. The common metastatic organs of rectal cancer are the liver and lung; however, rectal carcinoma with metastasis to subcutaneous soft tissue is a rare finding. CASE SUMMARY: In this report, the clinical data, diagnosis and treatment process, and postoperative pathological features of a patient with left waist subcutaneous soft tissue masses were retrospectively analyzed. The patient underwent surgical treatment after admission and recovered well after surgery. The final pathological diagnosis was rectal MAC with left waist subcutaneous soft tissue metastasis. CONCLUSION: Subcutaneous soft tissue metastasis of rectal MAC is rare, and it can suggest that the tumor is disseminated, and it can appear even earlier than the primary malignant tumor, which is occult and leads to a missed diagnosis and misdiagnosis clinically. When a subcutaneous soft tissue mass of unknown origin appears in a patient with rectal cancer, a malignant tumor should be considered.

4.
Biomed Chromatogr ; : e5887, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751131

ABSTRACT

Omics, bioinformatics, molecular docking, and experimental validation were used to elucidate the hepatoprotective effects, mechanisms, and active compounds of Shandougen (SDG) based on the biolabel-led research pattern. Integrated omics were used to explore the biolabels of SDG intervention in liver tissue. Subsequently, bioinformatics and molecular docking were applied to topologically analyze its therapeutic effects, mechanisms, and active compounds based on biolabels. Finally, an animal model was used to verify the biolabel analysis results. Omics, bioinformatics, and molecular docking revealed that SDG may exert therapeutic effects on liver diseases in the multicompound and multitarget synergistic modes, especially liver cirrhosis. In the validation experiment, SDG and its active compounds (betulinic acid and gallic acid) significantly improved the liver histopathological damage in the CCl4-induced liver cirrhosis model. Meanwhile, they also produced significant inhibitory effects on the focal adhesion pathway (integrin alpha-1, myosin regulatory light chain 2, laminin subunit gamma-1, etc.) and alleviated the associated pathological processes: focal adhesion (focal adhesion kinase 1)-extracellular matrix (collagen alpha-1(IV) chain, collagen alpha-1(VI) chain, and collagen alpha-2(VI) chain) dysfunction, carcinogenesis (alpha-fetoprotein, NH3, and acetylcholinesterase), inflammation (tumor necrosis factor alpha, interleukin-1 [IL-1], IL-6, and IL-10), and oxidative stress (reactive oxygen species, malonaldehyde, and superoxide dismutase). This study provides new evidence and insights for the hepatoprotective effects, mechanisms, and active compounds of SDG.

5.
Exp Eye Res ; 243: 109903, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642601

ABSTRACT

Pseudoexfoliation syndrome (PEX) is characterized by the deposition of fibrous pseudoexfoliation material (PEXM) in the eye, and secondary glaucoma associated with this syndrome has a faster and more severe clinical course. The incidence of PEX and pseudoexfoliative glaucoma (PEXG) exhibits ethnic clustering; however, few proteomic studies related to PEX and PEXG have been conducted in Asian populations. Therefore, we aimed to conduct proteomic analysis on the aqueous humor (AH) obtained from Uyghur patients with cataracts, those with PEX and cataracts, and those with PEXG and cataracts to better understand the molecular mechanisms of the disease and identify its potential biomarkers. To this end, AH was collected from patients with cataracts (n = 10, control group), PEX with cataracts (n = 10, PEX group), and PEXG with cataracts (n = 10, PEXG group) during phacoemulsification. Label-free quantitative proteomic techniques combined with bioinformatics were used to identify and analyze differentially expressed proteins (DEPs) in the AH of PEX and PEXG groups. Then, independent AH samples (n = 12, each group) were collected to validate DEPs by enzyme-linked immunosorbent assay (ELISA). The PEX group exhibited 25 DEPs, while the PEXG group showed 44 DEPs, both compared to the control group. Subsequently, we found three newly identified proteins in both PEX and PEXG groups, wherein FRAS1-related extracellular matrix protein 2 (FREM2) and osteoclast-associated receptor (OSCAR) exhibited downregulation, whereas coagulation Factor IX (F9) displayed upregulation. Bioinformatics analysis suggested that extracellular matrix interactions, abnormal blood-derived proteins, and lysosomes were mainly involved in the process of PEX and PEXG, and the PPI network further revealed F9 may serve as a potential biomarker for both PEX and PEXG. In conclusion, this study provides new information for understanding the proteomics of AH in PEX and PEXG.


Subject(s)
Aqueous Humor , Exfoliation Syndrome , Eye Proteins , Proteomics , Humans , Exfoliation Syndrome/metabolism , Aqueous Humor/metabolism , Proteomics/methods , Male , Female , Aged , Eye Proteins/metabolism , China/epidemiology , Glaucoma, Open-Angle/metabolism , Middle Aged , Biomarkers/metabolism , Enzyme-Linked Immunosorbent Assay , Cataract/metabolism , Intraocular Pressure/physiology
6.
Leg Med (Tokyo) ; 69: 102441, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38599008

ABSTRACT

The pedigree likelihood ratio (LR) can be used for determining kinship in the forensic kinship testing. LR can be obtained by analyzing the DNA data of Short tandem repeat (STR) and single nucleotide polymorphism (SNP) loci. With the advancement of biotechnology, increasing number of genetic markers have been identified, thereby expanding the pedigree range of kinship testing. Moreover, some of the loci are physically closer to each other and genetic linkage between loci is inevitable. LRs can be calculated by accounting for linkage or ignoring linkage (LRlinkage and LRignore, respectively). GeneVisa is a software for kinship testing (www.genevisa.net) and adopts the Lander-Green algorithm to deal with genetic linkage. Herein, we used the simulation program of the software GeneVisa to investigate the effects of genetic linkage on 1st-degree, 2nd-degree, and 3rd-degree kinship testing. We used this software to simulate LRlinkage and LRignore values based on 43 STRs and 134 SNPs in commercial kits by using the allele frequency rate and genetic distance data of the European population. The effects of linkage on LR distribution and LRs of routine cases were investigated by comparing the LRlinkage values with the LRignore values. Our results revealed that the linkage effect on LR distributions is small, but the effect on LRs of routine cases may be large. Moreover, the results indicated that the discriminatory power of genetic markers for kinship testing can be improved by accounting for linkage.

7.
Plant Biotechnol J ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600703

ABSTRACT

Sterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.

8.
Materials (Basel) ; 17(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38591616

ABSTRACT

Nowadays, high-pressure hydrogen storage is the most commercially used technology owing to its high hydrogen purity, rapid charging/discharging of hydrogen, and low-cost manufacturing. Despite numerous reviews on hydrogen storage technologies, there is a relative scarcity of comprehensive examinations specifically focused on high-pressure gaseous hydrogen storage and its associated materials. This article systematically presents the manufacturing processes and materials used for a variety of high-pressure hydrogen storage containers, including metal cylinders, carbon fiber composite cylinders, and emerging glass material-based hydrogen storage containers. Furthermore, it introduces the relevant principles and theoretical studies, showcasing their advantages and disadvantages compared to conventional high-pressure hydrogen storage containers. Finally, this article provides an outlook on the future development of high-pressure hydrogen storage containers.

9.
Sci Rep ; 14(1): 5235, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38433219

ABSTRACT

In the last few decades, nanoparticles have been a prominent topic in various fields, particularly in agriculture, due to their unique physicochemical properties. Herein, molybdenum copper lindgrenite Cu3(MoO4)2(OH)2 (CM) nanoflakes (NFs) are synthesized by a one-step reaction involving α-MoO3 and CuCO3⋅Cu(OH)2⋅xH2O solution at low temperature for large scale industrial production and developed as an effective antifungal agent for the oilseed rape. This synthetic method demonstrates great potential for industrial applications. Infrared spectroscopy and X-ray diffraction (XRD) results reveal that CM samples exhibit a pure monoclinic structure. TG and DSC results show the thermal stable properties. It can undergo a phase transition form copper molybdate (Cu3Mo2O9) at about 300 °C. Then Cu3Mo2O9 nanoparticles decompose into at CuO and MoO3 at 791 °C. The morphology of CM powder is mainly composed of uniformly distributed parallelogram-shaped nanoflakes with an average thickness of about 30 nm. Moreover, the binding energy of CM NFs is measured to be 2.8 eV. To assess the antifungal properties of these materials, both laboratory and outdoor experiments are conducted. In the pour plate test, the minimum inhibitory concentration (MIC) of CM NFs against Sclerotinia sclerotiorum (S. sclerotiorum) is determined to be 100 ppm, and the zone of inhibiting S. sclerotiorum is 14 mm. When the concentration is above 100 nm, the change rate of the hyphae circle slows down a little and begins to decrease until to 200 ppm. According to the aforementioned findings, the antifungal effects of a nano CM NFs solution are assessed at different concentrations (0 ppm (clear water), 40 ppm, and 80 ppm) on the growth of oilseed rape in an outdoor setting. The results indicate that the application of CM NFs led to significant inhibition of S. sclerotiorum. Specifically, when the nano CM solution was sprayed once at the initial flowering stage at a concentration of 80 ppm, S. sclerotiorum growth was inhibited by approximately 34%. Similarly, when the solution was sprayed once at the initial flowering stage and once at the rape pod stage, using a concentration of 40 ppm, a similar level of inhibition was achieved. These outcomes show that CM NFs possess the ability to bind with more metal ions due to their larger specific surface area. Additionally, their semiconductor physical properties enable the generation of reactive oxygen species (ROS). Therefore, CM NFs hold great potential for widespread application in antifungal products.


Subject(s)
Antifungal Agents , Brassica rapa , Antifungal Agents/pharmacology , Copper , Agriculture , Bone Plates
10.
Zhongguo Gu Shang ; 37(2): 148-52, 2024 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-38425065

ABSTRACT

OBJECTIVE: To investigate the risk factors for delayed union of extra-articular fractures of the middle and lower third of the tibia treated by locking plate. METHODS: Total of 135 patients of extra-articular fractures of the middle and lower third of the tibia from January 2013 to December 2018 were retrospectively analyzed, including 85 males and 50 females, ranged from 19 to 80 years old. All cases were treated with locking plates. The patients were divided into union group and delayed union group according to the condition of fracture union. The risk factors of delayed healing were determined by univariate analysis of 14 factors that might affect fracture healing first, then the factors with significance were analyzed by binary Logistic regression. RESULTS: There were 13 patients of delayed union, and the rate of delayed union was 9.63%. Univariate analysis showed that delayed union was associated with age, smoking, reduction method, anemia and time of preoperative preparation. Regression analysis showed that age[OR=0.849, 95%CI(0.755, 0.954), P=0.006], smoking[OR=0.020, 95%CI(0.002, 0.193), P=0.001], reduction method[OR=23.924, 95%CI(2.210, 258.943), P=0.009], anemia[OR=0.016, 95%CI(0.001, 0.289), P=0.005] were the contributory factors for delayed union. CONCLUSION: Young age, smoking, closed reduction and anemia are the risk factors for delayed union of extra-articular fractures of the middle and lower third of the tibia treated by locking plate.


Subject(s)
Anemia , Tibial Fractures , Male , Female , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Tibia/surgery , Tibial Fractures/surgery , Retrospective Studies , Treatment Outcome , Bone Plates , Fracture Healing , Risk Factors , Fracture Fixation, Internal/adverse effects , Fracture Fixation, Internal/methods
11.
Article in English | MEDLINE | ID: mdl-38553306

ABSTRACT

PURPOSE: To explore the role and mechanism of heat shock protein 27 (HSP27) in SACC VM formation. STUDY DESIGN: Immunohistochemistry and double staining with cluster of differentiation 31 (CD31) and periodic acid-Schiff (PAS) were used to detect HSP27 expression and VM in 70 SACC tissue samples separately. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence were used to detect gene and protein expression. HSP27 in SACC cells were overexpression or downregulated by transfecting HSP27 or short hairpin RNA target HSP27 (sh-HSP27). The migration and invasion abilities of SACC cells were detected using wound healing and Transwell invasion assays. The VM formation ability of the cells in vitro was detected using a Matrigel 3-dimensional culture. RESULTS: HSP27 expression was positively correlated with VM formation and affected the prognosis of patients. In vitro, HSP27 upregulation engendered VM formation and the invasion and migration of SACC cells. Mechanistically, HSP27 upregulation increased Akt phosphorylation and subsequently increased downstream matrix metalloproteinase 2 and 9 expressions. CONCLUSION: HSP27 may plays an important role in VM formation in SACC via the AKT-MMP-2/9 signalling pathway.


Subject(s)
Blotting, Western , Carcinoma, Adenoid Cystic , HSP27 Heat-Shock Proteins , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Neovascularization, Pathologic , Proto-Oncogene Proteins c-akt , Salivary Gland Neoplasms , Adult , Female , Humans , Male , Middle Aged , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/metabolism , Carcinoma, Adenoid Cystic/genetics , Cell Line, Tumor , Cell Movement , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , HSP27 Heat-Shock Proteins/metabolism , HSP27 Heat-Shock Proteins/genetics , Immunohistochemistry , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Neoplasm Invasiveness , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Real-Time Polymerase Chain Reaction , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/metabolism , Salivary Gland Neoplasms/genetics , Signal Transduction
12.
iScience ; 27(4): 109322, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38500828

ABSTRACT

Lunar-based equipment plays a vital role in the exploration of the moon because it undertakes the tasks of moving, transporting, digging, and so on. In order to control the gait of lunar-based equipment more precisely and guarantee mobile stability, the contact mechanism between its foot and lunar soil is worthy of in-depth study. In this paper, a contact model is proposed to predict the stress, strain, and displacement both on the contact surface and in the lunar soil when the foot is under vertical load. The axial stress in the proposed contact model is verified through the experiment and its accuracy in the lunar equipment is verified through simulation. The error is in a reasonable range and the influence depth of load conforms to the experiment results. This paper provides a relatively accurate model to describe the contact force between the lunar-based equipment's foot and the lunar soil and will promote the research of lunar exploration.

14.
Reprod Toxicol ; 125: 108556, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342390

ABSTRACT

The aim of this study was to investigate the role of ferroptosis in fluorosis women and the in vitro molecular mechanisms leading to ovarian dysfunction and abnormal hormone secretion by sodium fluoride (NaF) treatment of KGN cells. Fifty women with fluorosis as Fluorosis group and fifty healthy women as Control group were included in this study. The levels of lipid peroxidation and activities of antioxidant enzyme were assessed by photometric methods. The content of iron and glutathione (GSH) in serum was measured by microplate method. KGN cells were treated by different concentration of NaF (0, 1, 2, 4 and 8 ×10-3 M) for 24 h. The mRNA and protein expression levels of ferroptosis-related molecules, including glutathione peroxidase 4 (GPX4), solute carrier family 7 member (SLC7A11), nuclear factor erythroid 2-related factor 2 (Nrf2), ferritin heavy chain 1 (FTH1) and p53, were assessed by qRT-PCR and western blot analysis. Fluorosis group women had a significant higher levels of iron, Malondialdehyde (MDA), FSH and LH, and a lower levels of E2 and antioxidant enzyme in serum than that in the control group. The representative molecular changes of ferroptosis, such as the decrease in GPX4, Nrf2 and SLC7A11 expression (mRNA and protein expression), the increase in protein expression of p53, and a reduced level of E2 were observed in KGN cells treated by excessive NaF.It is concluded therefore that NaF increases the expression of p53 and inhibits ovarian granulosa cell ferroptosis preventive protein expression, resulting in abnormal hormone secretion and the ovarian dysfunction.


Subject(s)
Ferroptosis , Fluorides , Female , Humans , Antioxidants , NF-E2-Related Factor 2/genetics , Tumor Suppressor Protein p53 , Granulosa Cells , Glutathione , Iron , RNA, Messenger , Hormones
15.
Zhongguo Zhong Yao Za Zhi ; 49(2): 361-369, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403312

ABSTRACT

The 4-coumarate: CoA ligase(4CL) is a key enzyme in the upstream pathway of phenylpropanoids such as flavonoids, soluble phenolic esters, lignans, and lignins in plants. In this study, 13 4CL family members of Arabidopsis thaliana were used as reference sequences to identify the 4CL gene family candidate members of Isatis indigotica from the reported I. indigotica genome. Further bioinformatics analysis and analysis of the expression pattern of 4CL genes and the accumulation pattern of flavonoids were carried out. Thirteen 4CL genes were obtained, named Ii4CL1-Ii4CL13, which were distributed on chromosomes 1, 2, 3, 4, and 6. The analysis of the gene structure and conserved structural domains revealed the intron number of I. indigotica 4CL genes was between 1 and 12 and the protein structural domains were highly conserved. Cis-acting element analysis showed that there were multiple response elements in the promoter sequence of I. indigotica 4CL gene family, and jasmonic acid had the largest number of reaction elements. The collinearity analysis showed that there was a close relationship between the 4CL gene family members of I. indigotica and A. thaliana. As revealed by qPCR results, the expression analysis of the 4CL gene family showed that 10 4CL genes had higher expression levels in the aboveground part of I. indigotica. The content assay of flavonoids in different parts of I. indigotica showed that flavonoids were mainly accumulated in the aboveground part of plants. This study provides a basis for further investigating the roles of the 4CL gene family involved in the biosynthesis of flavonoids in I. indigotica.


Subject(s)
Isatis , Ligases , Ligases/genetics , Isatis/genetics , Promoter Regions, Genetic , Plants/metabolism , Flavonoids , Coenzyme A Ligases/genetics , Coenzyme A Ligases/chemistry , Coenzyme A Ligases/metabolism
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 190-197, 2024 Jan 20.
Article in Chinese | MEDLINE | ID: mdl-38322514

ABSTRACT

Objective: To create a novel chitosan antibacterial hemostatic sponge (NCAHS) and to evaluate its material and biological properties. Methods: Chitosan, a polysaccharide, was used as the sponge substrate and different proportions of sodium tripolyphosphate (STPP), glycerol, and phenol sulfonyl ethylamine were added to prepare the sponges through the freeze-drying method. The whole-blood coagulation index (BCI) was used as the screening criterion to determine the optimal concentrations of chitosan and the other additives and the hemostatic sponges were prepared accordingly. Zein/calcium carbonate (Zein/CaCO3) composite microspheres loaded with ciprofloxacin hydrochloride were prepared and added to the hemostatic sponges to obtain NCAHS. Scanning electron microscope was used to observe the microscopic morphology and porosity of the NCAHS. The water absorption rate, in vitro antibacterial susceptibility rate against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), in vitro coagulation performance, and hemocompatibility of NCAHS were examined. The coagulation performance of NCAHS was evaluated by using rabbit liver injury and rabbit auricular artery hemorrhageear models and commercial hemostatic sponge (CHS) was used as a control. The in vivo biocompatibility, including such aspects as cytotoxicity, skin irritation in animals, and acute in vivo toxicity, of the NCAHS extracts was examined by using as a reference the national standards for biological evaluation of medical devices. Results: The NCAHS prepared with 1.5% chitosan (W/V), 0.01% STPP (W/V), 0% glycerol (V/V), 0.15% phenol-sulfonyl-ethylamine (V/V), Zein and CaCO3 at the mixing ratio of 5∶1 (W/W), Zein at the final mass concentration of 2.5 g/L, and ethanol at the final concentration of 17.5% (V/V) were fine and homogeneous, possessing a honeycomb-like porous structure with a pore size of about 200 µm. The NCAHS thus prepared had the lowest BCI value. The water absorption ([2362.16±201.15] % vs. [1102.56±91.79]%) and in vitro coagulation performance (31.338% vs. 1.591%) of NCAHS were significantly better than those of CHS (P<0.01). Tests with the in vivo auricular artery hemorrhage model ([36.00±13.42] s vs. [80.00±17.32] s) and rabbit liver bleeding model ([30.00±0] s vs. [70.00±17.32] s) showed that the hemostasis time of NCAHS was significantly shorter than that of CHS (P<0.01). NCAHS had significant inhibitory ability against S. aureus and E. coli. In addition, NCAHS showed good in vitro and in vivo biocompatibility. Conclusion: NCAHS is a composite sponge that shows excellent antimicrobial properties, hemostatic effect, and biocompatibility. Therefore, its extensive application in clinical settings is warranted.


Subject(s)
Chitosan , Hemostatics , Zein , Animals , Rabbits , Chitosan/chemistry , Hemostatics/pharmacology , Escherichia coli , Glycerol/pharmacology , Staphylococcus aureus , Zein/pharmacology , Hemostasis , Anti-Bacterial Agents/pharmacology , Hemorrhage , Water/pharmacology , Ethylamines/pharmacology , Phenols/pharmacology
17.
BMC Oral Health ; 24(1): 284, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418977

ABSTRACT

BACKGROUND: Investigating the molecular biology underpinning the early-stage of traumatic temporomandibular joint (TMJ) ankylosis is crucial for discovering new ways to prevent the disease. This study aimed to explore the dynamic changes of transcriptome from the intra-articular hematoma or the newly generated ankylosed callus during the onset and early progression of TMJ ankylosis. METHODS: Based on a well-established sheep model of TMJ bony ankylosis, the genome-wide microarray data were obtained from samples at postoperative Days 1, 4, 7, 9, 11, 14 and 28, with intra-articular hematoma at Day 1 serving as controls. Fold changes in gene expression values were measured, and genes were identified via clustering based on time series analysis and further categorised into three major temporal classes: increased, variable and decreased expression groups. The genes in these three temporal groups were further analysed to reveal pathways and establish their biological significance. RESULTS: Osteoblastic and angiogenetic genes were found to be significantly expressed in the increased expression group. Genes linked to inflammation and osteoclasts were found in the decreased expression group. The various biological processes and pathways related to each temporal expression group were identified, and the increased expression group comprised genes exclusively involved in the following pathways: Hippo signaling pathway, Wnt signaling pathway and Rap 1 signaling pathway. The decreased expression group comprised genes exclusively involved in immune-related pathways and osteoclast differentiation. The variable expression group consisted of genes associated with DNA replication, DNA repair and DNA recombination. Significant biological pathways and transcription factors expressed at each time point postoperatively were also identified. CONCLUSIONS: These data, for the first time, presented the temporal gene expression profiling and reveal the important process of molecular biology in the early-stage of traumatic TMJ bony ankylosis. The findings might contributed to identifying potential targets for the treatment of TMJ ankylosis.


Subject(s)
Ankylosis , Temporomandibular Joint Disorders , Temporomandibular Joint , Animals , Sheep/genetics , Mandibular Condyle , Ankylosis/genetics , Gene Expression Profiling , Hematoma
18.
ACS Appl Mater Interfaces ; 16(8): 9956-9967, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38349958

ABSTRACT

Microchannels often serve as highways for cancer migration, and their topology largely determines the migration efficiency. Curvature, a topological parameter in biological systems, has recently been reported to be efficient in guiding cell polarization and migration. Curvature varies widely along curved microchannels, while its influence on cell migration remains elusive. Here, we recapitulated the curved microchannels, as observed in clinical tumor tissues with hydrogels, and studied how cancer cells respond to curvature. We found that cells bend more significantly in a larger curvature and exhibit less spreading as well as lower motility. The underlying mechanism is probably based on the hindrance of the movement of cytoskeletal molecules at the curved microchannel walls. Collectively, our results demonstrated that the accelerated actin retrograde flow rate under local curvature has an effective negative regulation on cell motility and morphology, leading to shortened and bent cell morphologies as well as hampered cell migration efficiency.


Subject(s)
Actins , Neoplasms , Humans , Cell Movement/physiology , Neoplasms/pathology , Cytoskeleton
19.
Angew Chem Int Ed Engl ; 63(12): e202319925, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38286754

ABSTRACT

Anaerobes dominate the microbiota of the gastrointestinal (GI) tract, where a significant portion of small molecules can be degraded or modified. However, the enormous metabolic capacity of gut anaerobes remains largely elusive in contrast to aerobic bacteria, mainly due to the requirement of sophisticated laboratory settings. In this study, we employed an in silico machine learning platform, MoleculeX, to predict the metabolic capacity of a gut anaerobe, Clostridium sporogenes, against small molecules. Experiments revealed that among the top seven candidates predicted as unstable, six indeed exhibited instability in C. sporogenes culture. We further identified several metabolites resulting from the supplementation of everolimus in the bacterial culture for the first time. By utilizing bioinformatics and in vitro biochemical assays, we successfully identified an enzyme encoded in the genome of C. sporogenes responsible for everolimus transformation. Our framework thus can potentially facilitate future understanding of small molecules metabolism in the gut, further improve patient care through personalized medicine, and guide the development of new small molecule drugs and therapeutic approaches.


Subject(s)
Clostridium , Everolimus , Humans , Everolimus/metabolism , Clostridium/metabolism , Bacteria, Anaerobic
20.
Proc Natl Acad Sci U S A ; 121(6): e2309096120, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38285934

ABSTRACT

Invisibility, a fascinating ability of hiding objects within environments, has attracted broad interest for a long time. However, current invisibility technologies are still restricted to stationary environments and narrow band. Here, we experimentally demonstrate a Chimera metasurface for multiterrain invisibility by synthesizing the natural camouflage traits of various poikilotherms. The metasurface achieves chameleon-like broadband in situ tunable microwave reflection mimicry of realistic water surface, shoal, beach/desert, grassland, and frozen ground from 8 to 12 GHz freely via the circuit-topology-transited mode evolution, while remaining optically transparent as an invisible glass frog. Additionally, the mechanic-driven Chimera metasurface without active electrothermal effect, owning a bearded dragon-like thermal acclimation, can decrease the maximum thermal imaging difference to 3.1 °C in tested realistic terrains, which cannot be recognized by human eyes. Our work transitions camouflage technologies from the constrained scenario to ever-changing terrains and constitutes a big advance toward the new-generation reconfigurable electromagnetics with circuit-topology dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...