Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Hum Mol Genet ; 33(11): 969-980, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38483349

ABSTRACT

RNA methylation of N6-methyladenosine (m6A) is emerging as a fundamental regulator of every aspect of RNA biology. RNA methylation directly impacts protein production to achieve quick modulation of dynamic biological processes. However, whether RNA methylation regulates mitochondrial function is not known, especially in neuronal cells which require a high energy supply and quick reactive responses. Here we show that m6A RNA methylation regulates mitochondrial function through promoting nuclear-encoded mitochondrial complex subunit RNA translation. Conditional genetic knockout of m6A RNA methyltransferase Mettl14 (Methyltransferase like 14) by Nestin-Cre together with metabolomic analysis reveals that Mettl14 knockout-induced m6A depletion significantly downregulates metabolites related to energy metabolism. Furthermore, transcriptome-wide RNA methylation profiling of wild type and Mettl14 knockout mouse brains by m6A-Seq shows enrichment of methylation on mitochondria-related RNA. Importantly, loss of m6A leads to a significant reduction in mitochondrial respiratory capacity and membrane potential. These functional defects are paralleled by the reduced expression of mitochondrial electron transport chain complexes, as well as decreased mitochondrial super-complex assembly and activity. Mechanistically, m6A depletion decreases the translational efficiency of methylated RNA encoding mitochondrial complex subunits through reducing their association with polysomes, while not affecting RNA stability. Together, these findings reveal a novel role for RNA methylation in regulating mitochondrial function. Given that mitochondrial dysfunction and RNA methylation have been increasingly implicate in neurodegenerative disorders, our findings not only provide insights into fundamental mechanisms regulating mitochondrial function, but also open up new avenues for understanding the pathogenesis of neurological diseases.


Subject(s)
Adenosine , Methyltransferases , Mice, Knockout , Mitochondria , Animals , Mitochondria/metabolism , Mitochondria/genetics , Mice , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , RNA/genetics , RNA/metabolism , Humans , Protein Biosynthesis , Energy Metabolism/genetics , Neurons/metabolism , RNA Methylation
2.
Proc Natl Acad Sci U S A ; 120(47): e2300308120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37976261

ABSTRACT

Spinal muscular atrophy (SMA), the top genetic cause of infant mortality, is characterized by motor neuron degeneration. Mechanisms underlying SMA pathogenesis remain largely unknown. Here, we report that the activity of cyclin-dependent kinase 5 (Cdk5) and the conversion of its activating subunit p35 to the more potent activator p25 are significantly up-regulated in mouse models and human induced pluripotent stem cell (iPSC) models of SMA. The increase of Cdk5 activity occurs before the onset of SMA phenotypes, suggesting that it may be an initiator of the disease. Importantly, aberrant Cdk5 activation causes mitochondrial defects and motor neuron degeneration, as the genetic knockout of p35 in an SMA mouse model rescues mitochondrial transport and fragmentation defects, and alleviates SMA phenotypes including motor neuron hyperexcitability, loss of excitatory synapses, neuromuscular junction denervation, and motor neuron degeneration. Inhibition of the Cdk5 signaling pathway reduces the degeneration of motor neurons derived from SMA mice and human SMA iPSCs. Altogether, our studies reveal a critical role for the aberrant activation of Cdk5 in SMA pathogenesis and suggest a potential target for therapeutic intervention.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Atrophy, Spinal , Animals , Humans , Mice , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Disease Models, Animal , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Muscular Atrophy, Spinal/metabolism , Nerve Degeneration/pathology , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism
3.
PLoS Genet ; 19(4): e1010740, 2023 04.
Article in English | MEDLINE | ID: mdl-37099597

ABSTRACT

Oxidative stress response is a fundamental biological process mediated by conserved mechanisms. The identities and functions of some key regulators remain unknown. Here, we report a novel role of C. elegans casein kinase 1 gamma CSNK-1 (also known as CK1γ or CSNK1G) in regulating oxidative stress response and ROS levels. csnk-1 interacted with the bli-3/tsp-15/doxa-1 NADPH dual oxidase genes via genetic nonallelic noncomplementation to affect C. elegans survival in oxidative stress. The genetic interaction was supported by specific biochemical interactions between DOXA-1 and CSNK-1 and potentially between their human orthologs DUOXA2 and CSNK1G2. Consistently, CSNK-1 was required for normal ROS levels in C. elegans. CSNK1G2 and DUOXA2 each can promote ROS levels in human cells, effects that were suppressed by a small molecule casein kinase 1 inhibitor. We also detected genetic interactions between csnk-1 and skn-1 Nrf2 in oxidative stress response. Together, we propose that CSNK-1 CSNK1G defines a novel conserved regulatory mechanism for ROS homeostasis.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Dual Oxidases/pharmacology , NADP , Reactive Oxygen Species , Casein Kinase I/genetics , Oxidative Stress/genetics , NADPH Oxidases , Tetraspanins/genetics
4.
Mol Biol Cell ; 34(4): br5, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36753381

ABSTRACT

Centromeres are known to cluster around nucleoli in Drosophila and mammalian cells, but the significance of the nucleoli-centromere interaction remains underexplored. To determine whether the interaction is dynamic under different physiological and pathological conditions, we examined nucleolar structure and centromeres at various differentiation stages using cell culture models and the results showed dynamic changes in nucleolar characteristics and nucleoli-centromere interactions through differentiation and in cancer cells. Embryonic stem cells usually have a single large nucleolus, which is clustered with a high percentage of centromeres. As cells differentiate into intermediate states, the nucleolar number increases and the centromere association decreases. In terminally differentiated cells, including myotubes, neurons, and keratinocytes, the number of nucleoli and their association with centromeres are at the lowest. Cancer cells demonstrate the pattern of nucleoli number and nucleoli-centromere association that is akin to proliferative cell types, suggesting that nucleolar reorganization and changes in nucleoli-centromere interactions may play a role in facilitating malignant transformation. This idea is supported in a case of pediatric rhabdomyosarcoma, in which induced differentiation reduces the nucleolar number and centromere association. These findings suggest active roles of nucleolar structure in centromere function and genome organization critical for cellular function in both normal development and cancer.


Subject(s)
Cell Nucleolus , Neoplasms , Animals , Cell Nucleolus/metabolism , Centromere , Cell Nucleus/metabolism , Mammals , Neoplasms/metabolism
5.
Metallomics ; 14(6)2022 06 08.
Article in English | MEDLINE | ID: mdl-35383848

ABSTRACT

Manganese (Mn) can accumulate in the striatum through the blood-brain barrier and cause neurotoxicity. It is mainly due to the decrease of dopamine (DA) levels in the striatum, which leads to extrapyramidal dysfunction. Netrin-1, as an axon guidance factor, can regulate the normal transmission of DA. However, few people have explored the role of netrin-1 in Mn-induced neurotoxicity. The purpose of the present study is to verify whether overexposure of Mn inhibits the axon attractant netrin-1, thereby damaging dopaminergic neuronal and motor function of mice. Here, we found that excessive Mn exposure reduces the expression of striatum netrin-1, tyrosine hydroxylase, DA receptor D3, and dopamine transporter 1, and the levels of serum netrin-1, and promotes dopaminergic neuronal and striatum injury, leading to DA transmission and motor dysfunction. Notably, recombinant mouse netrin-1 protein significantly antagonized Mn-induced neurotoxicity. These findings suggest that netrin-1 participates in Mn-induced motor dysfunction. Our findings may provide an experimental basis for fully elucidating the effects of Mn-induced neurotoxicity.


Subject(s)
Dopamine , Manganese Poisoning , Animals , Axons/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Humans , Manganese/toxicity , Manganese Poisoning/metabolism , Mice , Netrin-1/pharmacology
6.
Cell Mol Neurobiol ; 42(8): 2459-2472, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34383231

ABSTRACT

Epigenetics play an essential role in the occurrence and improvement of many diseases. Evidence shows that epigenetic modifications are crucial to the regulation of gene expression. DNA methylation is closely linked to embryonic development in mammalian. In recent years, epigenetic drugs have shown unexpected therapeutic effects on neurological diseases, leading to the study of the epigenetic mechanism in neurodegenerative diseases. Unlike genetics, epigenetics modify the genome without changing the DNA sequence. Research shows that epigenetics is involved in all aspects of neurodegenerative diseases. The study of epigenetic will provide valuable insights into the molecular mechanism of neurodegenerative diseases, which may lead to new treatments and diagnoses. This article reviews the role of epigenetic modifications neurodegenerative diseases with dyskinesia, and discusses the therapeutic potential of epigenetic drugs in neurodegenerative diseases.


Subject(s)
Dyskinesias , Neurodegenerative Diseases , Animals , DNA Methylation/genetics , Dyskinesias/genetics , Epigenesis, Genetic , Humans , Mammals , Neurodegenerative Diseases/genetics
7.
Chem Biol Interact ; 351: 109754, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34822792

ABSTRACT

Human infertility has become the third largest serious disease in the world, seriously affecting the quality of human fertility. Studies have shown that manganese (Mn) can accumulate in the testis through the blood-testicular barrier and damage the male reproductive system. However, the mechanism has not been explored clearly. Recent studies have reported that YTH domain-containing 2 (YTHDC2) can regulate reproductive function. However, none has explored the role of YTHDC2 in Mn-induced reproductive toxicity. The present study investigated whether YTHDC2/CyclinB2 (CCNB2) pathway participates in Mn-induced reproductive toxicity using Kunming mice, spermatogonia, and the seminal plasma of male workers. The mice were received intraperitoneal (i.p.) injections of 0, 12.5, 25, and 50 mg/kg MnCl2 once daily for 2 weeks. The cells were treated with 0, 100, 200 and 400 µM MnCl2 for 24 h. Here, we found that occupational Mn exposure significantly increased Mn levels in the seminal plasma of male workers, while decreased sperm density, semen quality, and the levels of YTHDC2, CCNB1, and CCNB2. We found that Mn can inhibit the YTHDC2/CCNB2 signaling pathway and block the G2/M phase of the cell cycle. Moreover, the morphology of cells and the histomorphology of mice testis were injured. Notably, over-expression (OE) of YTHDC2 increased CCNB2 levels, reduced cell cycle arrest, and improved reproductive toxicity after Mn exposure. These findings suggest that the YTHDC2/CCNB2 signaling pathway participates in Mn-induced reproductive toxicity, and OE of YTHDC2 can mitigate the toxicity of Mn.


Subject(s)
Cyclin B2/metabolism , Manganese/toxicity , RNA Helicases/metabolism , Spermatogenesis/drug effects , Spermatozoa/drug effects , Adolescent , Adult , Animals , Cell Line , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Male , Manganese/analysis , Mice , Middle Aged , Semen/chemistry , Sperm Count , Sperm Motility/drug effects , Spermatozoa/pathology , Testis/drug effects , Young Adult
8.
J Hazard Mater ; 426: 128099, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34954437

ABSTRACT

One of the major environmental factors that induce PD is Manganese (Mn). Cellular and molecular mechanism of parkinsonism caused by Mn has not been explored clearly. The results of in vivo and in vitro experiments showed that Mn exposure caused abnormal projection of dopaminergic neurons and decreased mRNA expression and protein levels of FTO. This is due to Mn-induced the upregulation of Foxo3a. Using the cell model of overexpression of FTO, we found that FTO could antagonize Mn-induced the down-regulation of axon guidance molecule ephrin-B2 through RNA-seq, MeRIP-qPCR, and RT-qPCR experiments. Through RIP-seq and actinomycin D experiments, it was found that FTO can up-regulate the mRNA m6A level of ephrin-B2, which can be recognized by YTHDF2 and degraded. Finally, it is proved that Mn induces dopaminergic neurons projection injury and motor dysfunction through Foxo3a/FTO/m6A/ephrin-B2/YTHDF2 signal pathway.


Subject(s)
Manganese , Parkinsonian Disorders , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Axon Guidance , Humans , Manganese/toxicity , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/genetics , RNA, Messenger
9.
Mol Cell Endocrinol ; 542: 111523, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34843901

ABSTRACT

The GABAA receptor (GABAAR) plays important roles in the regulation of Mn-induced GnRH secretion in immature female rats. However, the underlying molecular mechanisms remain unknown. Here, we assessed whether FTO and its substrate m6A are correlated with GABAAR expression in GnRH neurons after treatment with Mn in vitro and in vivo. Our study indicated that Mn treatment increased the expression of GnRH mRNA and decreased the levels of GABAAR protein but had no effect on GABAAR mRNA. Moreover, Mn upregulated the levels of FTO and inhibited global cellular m6A levels and GABAAα2 mRNA m6A levels. Knockdown of FTO increased the expression of GABAAR protein and GABAAα2 mRNA m6A levels. Data from rat models further demonstrate that inhibition of FTO suppressed GABAAR protein expression in the hypothalamus, causing delayed puberty onset. Collectively, our findings suggest that FTO-dependent m6A demethylation plays a critical role in regulating GABAAR mRNA processing in GnRH neurons.


Subject(s)
Gonadotropin-Releasing Hormone , Puberty, Precocious , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Female , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Puberty, Precocious/chemically induced , Puberty, Precocious/genetics , Puberty, Precocious/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Sexual Maturation
10.
Front Cell Dev Biol ; 9: 681238, 2021.
Article in English | MEDLINE | ID: mdl-34568313

ABSTRACT

Eukaryotic messenger mRNAs contain many RNA methyl chemical modifications, in which N6-methyladenosine (m6A) plays a very important role. The modification process of RNA methylation is a dynamic reversible regulatory process that is mainly catalyzed by "Writer" m6A methyltransferase, removed by "Eraser" m6A demethylase, and recognized by the m6A binding protein, thereby, linking m6A modification with other mRNA pathways. At various stages of the life cycle, m6A modification plays an extremely important role in regulating mRNA splicing, processing, translation, as well as degradation, and is associated with gametogenesis and fertility for both sexes. Normal gametogenesis is a basic guarantee of fertility. Infertility leads to trauma, affects harmony in the family and seriously affects the quality of life. We review the roles and mechanisms of RNA m6A methylation modification in infertility and provide a potential target for infertility treatment, which can be used for drug development.

12.
Reprod Fertil Dev ; 2021 May 04.
Article in English | MEDLINE | ID: mdl-33941309

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) is a representative endocrine-disrupting chemical (EDC) that has reproductive, developmental, neurological and immune toxicity in humans and rodents, of which damage to the reproductive system is the most serious. However, exposure to DEHP at different stages of life may produce different symptoms. Studies on this substance are also controversial. This review describes the reproductive effects of DEHP in males and females at different life stages, including infancy, childhood and adulthood.

13.
Mol Neurobiol ; 58(7): 3290-3307, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33675023

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by progressive memory decline and cognitive dysfunctions. Although the causes of AD have not yet been established, many mechanisms have been proposed. Axon-guidance molecules play the roles in the occurrence and development of AD by participating in different mechanisms. Therefore, what roles do axon-guidance molecules play in AD? This study aimed at elucidating how axon-guidance molecules Netrins, Slits, Semaphorins, and Ephrins regulate the levels of Aß, hyperphosphorylation of tau protein, Reelin, and other ways through different signaling pathways, in order to show the roles of axon-guidance molecules in the occurrence and development of AD. And it is hoped that this study can provide a theoretical basis and new perspectives in the search for new therapeutic targets for AD.


Subject(s)
Alzheimer Disease/metabolism , Axon Guidance/physiology , Axons/metabolism , Nerve Tissue Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Axons/pathology , Growth Cones/metabolism , Growth Cones/pathology , Humans , Nerve Tissue Proteins/genetics , Synapses/genetics , Synapses/metabolism , Synapses/pathology
14.
Front Med (Lausanne) ; 7: 607849, 2020.
Article in English | MEDLINE | ID: mdl-33335906

ABSTRACT

In December 2019, the 2019 novel coronavirus disease (COVID-19), which has been identified to be caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China and spread across the world. Higher plasma levels of cytokines, including interleukin (IL)-6, IL-2, IL-7, IL-10, and tumor necrosis factor-α, were found in patients with COVID-19, which implies the occurrence of a cytokine storm and its association with disease severity. Extracorporeal blood purification has been proven to effectively remove the released inflammatory cytokines. In this study, we report on a patient with COVID-19 who benefited from hemoadsorption.

16.
Ecotoxicol Environ Saf ; 201: 110712, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32502905

ABSTRACT

Exposure to manganese (Mn) can cause male reproductive damage and lead to abnormal secretion of sex hormones. Gonadotropin-releasing hormone (GnRH) plays an important role in the neuromodulation of vertebrate reproduction. Astrocytes can indirectly regulate the secretion of GnRH by binding paracrine prostaglandin E2 (PGE2) specifically to the EP1 and EP2 receptors on GnRH neurons. Prior studies assessed the abnormal secretion of GnRH caused by Mn exposure, but the specific mechanism has not been reported in detail. This study investigated the effects of Mn exposure on the reproductive system of male mice to clarify the role of PGE2 in the abnormal secretion of GnRH in the hypothalamus caused by exposure to Mn. Our data demonstrate that antagonizing the EP1 and EP2 receptors of PGE2 can restore abnormal levels of GnRH caused by Mn exposure. Mn exposure causes reduced sperm count and sperm shape deformities. These findings suggest that EP1 and EP2, the receptors of PGE2, may be the key to abnormal GnRH secretion caused by Mn exposure. Antagonizing the PGE2 receptors may reduce reproductive damage caused by Mn exposure.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/drug effects , Manganese/toxicity , Receptors, Prostaglandin E, EP1 Subtype/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Reproduction/drug effects , Animals , Hypothalamus/metabolism , Male , Manganese/metabolism , Mice , Neurons/drug effects , Neurons/metabolism , Receptors, Prostaglandin E, EP1 Subtype/antagonists & inhibitors , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
17.
Neurotox Res ; 38(2): 508-523, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32472497

ABSTRACT

Manganese (Mn) is an essential element required for many biological processes and systems in the human body. Mn intoxication increases brain glutamate (Glu) levels causing neuronal damage. Recent studies have reported that ephrin-A3 regulates this glutamate transporter. However, none has explored the role of this crucial molecule in Mn-induced excitotoxicity. The present study investigated whether ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity using astrocytes and Kunming mice. The mechanisms were explored using fluoxetine (ephrin-A3 inhibitor) and riluzole (a Glu release inhibitor). Firstly, we demonstrated that Mn exposure (500 µM or 50 mg/kg MnCl2) significantly increased Mn, ephrin-A3, and Glu levels, and inhibited Na+-K+ ATPase activity, as well as mRNA and protein levels of GLAST and GLT-1. Secondly, we found that astrocytes and mice pretreated with fluoxetine (100 µM or 15 mg/kg) and riluzole (100 µM or 32 µmol/kg) prior to Mn exposure had lower ephrin-A3 and Glu levels, but higher Na+-K+ ATPase activity, expression levels of GLAST and GLT-1 than those exposed to 500 µM or 50 mg/kg MnCl2. Moreover, the morphology of cells and the histomorphology of mice striatum were injured. Results showed that pretreatment with fluoxetine and riluzole attenuated the Mn-induced motor dysfunctions. Together, these results suggest that the ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity, and fluoxetine and riluzole can mitigate the Mn-induced excitotoxicity in mice brain.


Subject(s)
Corpus Striatum/drug effects , Ephrin-A3/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Transporter 1/drug effects , Excitatory Amino Acid Transporter 2/drug effects , Fluoxetine/pharmacology , Glutamic Acid/drug effects , Riluzole/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Corpus Striatum/metabolism , Ephrin-A3/genetics , Ephrin-A3/metabolism , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/genetics , Excitatory Amino Acid Transporter 2/metabolism , Glutamic Acid/metabolism , Manganese/toxicity , Mice , Signal Transduction
18.
Cell Biosci ; 10: 26, 2020.
Article in English | MEDLINE | ID: mdl-32158532

ABSTRACT

Glutamate (Glu) is the predominant excitatory neurotransmitter in the central nervous system (CNS). Glutamatergic transmission is critical for controlling neuronal activity. In presynaptic neurons, Glu is stored in synaptic vesicles and released by stimulation. The homeostasis of glutamatergic system is maintained by a set of transporters in the membrane of synaptic vesicles. The family of vesicular Glu transporters in mammals is comprised of three highly homologous proteins: VGLUT1-3. Among them, VGLUT1 accounts for the largest proportion. However, most of the Glu is transported into the synaptic vesicles via the type 1 vesicle Glu transporter (VGLUT1). So, the expression of particular VGLUT1 is largely complementary with limited overlap and so far it is most specific markers for neurons that use Glu as neurotransmitter. Controlling the activity of VGLUT1 could potentially modulate the efficiency of excitatory neuro-transmission and change the filling level of synaptic vesicles. This review summarizes the recent knowledge concerning molecular and functional characteristic of VGLUT1, their development, contribution to a series of central nervous system and peripheral nervous system diseases such as learning and memory disorders, Alzheimer's disease, Parkinson's disease and sensitized nociception or pain pathology et al.

19.
Environ Toxicol ; 35(6): 683-696, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32061141

ABSTRACT

Methylmercury (MeHg) is a potent neurotoxin,which leads to a wide range of intracellular effects. The molecular mechanismsassociated to MeHg-induced neurotoxicity have not been fully understood.Oxidative stress, as well as synaptic glutamate (Glu) dyshomeostasis have beenidentified as two critical mechanisms during MeHg-mediated cytotoxicity. Here,we developed a rat model of MeHg poisoning to evaluate its neurotoxic effectsby focusing on cellular oxidative stress and synaptic Glu disruption. Inaddition, we investigated the neuroprotective role of alpha-lipoic acid (α-LA), a natural antioxidant, todeeply explore the underlying interaction between them. Fifty-six rats wererandomly divided into four groups: saline control, MeHg treatment (4 or 12µmol/kg MeHg), and α-LApre-treatment (35 µmol/kg α-LA+12µmol/kg MeHg). Rats exposed to 12 µmol/kg MeHg induced neuronal oxidativestress, with ROS accumulation and cellular antioxidant system impairment. Nrf2 andxCT pathways were activated with MeHg treatment. The enzymatic or non-enzymaticof cellular GSH synthesis were also disrupted by MeHg. On the other hand, the abnormalactivities of GS and PAG disturbed the "Glu-Gln cycle", leading to NMDARsover-activation, Ca2+ overload, and the calpain activation, which acceleratedNMDARs degradation. Meanwhile, the high expressions of phospho-p44/42 MAPK,phospho-p38 MAPK, phospho-CREB, and the high levels of caspase 3 and Bax/Bcl-2 finallyindicated the neuronal apoptosis after MeHg exposure. Pre-treatment with α-LA significantly preventedMeHg-induced neurotoxicity. In conclusion, the oxidative stress and synapticGlu dyshomeostasis contributed to MeHg-induced neuronal apoptosis. Alpha-LAattenuated these toxic effects through mechanisms of anti-oxidation andindirect Glu dyshomeostasis prevention.


Subject(s)
Apoptosis/drug effects , Cerebral Cortex/drug effects , Glutamic Acid/metabolism , Methylmercury Compounds/toxicity , Neurons/drug effects , Oxidative Stress/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Antioxidants/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Male , Neurons/metabolism , Neurons/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Oxidation-Reduction , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Thioctic Acid/pharmacology
20.
Ecotoxicol Environ Saf ; 188: 109898, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31711775

ABSTRACT

Gamma-aminobutyric acid (GABA) plays a critical role in regulation of gonadotropin-releasing hormone (GnRH) through GABAA receptor (GABAAR). Nitric oxide (NO) production has correlation with GABA and regulates GnRH secretion. This study was performed to examine the mechanisms by which manganese (Mn) accelerate puberty onset involves GABAAR/NO pathway in the preoptic area-anterior hypothalamus (POA-AH) in immature female rats. First, female rats received daily dose of MnCl2 0 (saline), 2.5, 5 and 10 mg/kg b.w by oral gavage during postnatal day (PND) 21-32. Animals administered with 10 mg/kg MnCl2 exhibited earlier puberty onset age and advanced ovary and uterus development than these in saline-treatment group. Furthermore, we found that decrease of GABAAR result in elevated production of nitric oxide synthase1 (NOS1), NO and GnRH in the POA-AH. Second, we recorded the neuronal spikes alternation after perfusion with GABAAR inhibitor bicuculline (BIC), GABAAR agonist isoguvacine (isog), and MnCl2 from the POA-AH in acute brain slices of PND21 rats. Spontaneous firing revealed a powerful GABAAR-mediated action on immature POA-AH and confirm that MnCl2 has a significant effect on GABAAR. Third, we revealed that decrease in NOS1 and NO production by treatment with isog-alone or isog+MnCl2 contribute to the decrease of GnRH in the POA-AH and a delayed puberty onset age compared to treatment with MnCl2-alone. Together, these results suggested that excessive exposure to MnCl2 stimulates NO production through decreased GABAAR in the POA-AH to advance puberty onset in immature female rats.


Subject(s)
Aging/drug effects , Chlorides/toxicity , Endocrine Disruptors/toxicity , Nitric Oxide/metabolism , Preoptic Area/drug effects , Receptors, GABA-A/metabolism , Sexual Maturation/drug effects , Aging/metabolism , Animals , Female , Gonadotropin-Releasing Hormone/metabolism , Manganese Compounds , Neurons/drug effects , Ovary/drug effects , Ovary/growth & development , Preoptic Area/growth & development , Preoptic Area/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Uterus/diagnostic imaging , Uterus/drug effects , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...