Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cyborg Bionic Syst ; 5: 0123, 2024.
Article in English | MEDLINE | ID: mdl-38784125

ABSTRACT

The globus pallidus internus (GPi) was considered a common target for stimulation in Parkinson's disease (PD). Located deep in the brain and of small size, pinpointing it during surgery is challenging. Multi-channel microelectrode arrays (MEAs) can provide micrometer-level precision functional localization, which can maximize the surgical outcome. In this paper, a 64-channel MEA modified by platinum nanoparticles with a detection site impedance of 61.1 kΩ was designed and prepared, and multiple channels could be synchronized to cover the target brain region and its neighboring regions so that the GPi could be identified quickly and accurately. The results of the implant trajectory indicate that, compared to the control side, there is a reduction in local field potential (LFP) power in multiple subregions of the upper central thalamus on the PD-induced side, while the remaining brain regions exhibit an increasing trend. When the MEA tip was positioned at 8,700 µm deep in the brain, the various characterizations of the spike signals, combined with the electrophysiological characteristics of the ß-segmental oscillations in PD, enabled MEAs to localize the GPi at the single-cell level. More precise localization could be achieved by utilizing the distinct characteristics of the internal capsule (ic), the thalamic reticular nucleus (Rt), and the peduncular part of the lateral hypothalamus (PLH) brain regions, as well as the relative positions of these brain structures. The MEAs designed in this study provide a new detection method and tool for functional localization of PD targets and PD pathogenesis at the cellular level.

2.
ACS Sens ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779969

ABSTRACT

Precise assessment of wakefulness states during sevoflurane anesthesia and timely arousal are of paramount importance to refine the control of anesthesia. To tackle this issue, a bidirectional implantable microelectrode array (MEA) is designed with the capability to detect electrophysiological signal and perform in situ deep brain stimulation (DBS) within the dorsomedial hypothalamus (DMH) of mice. The MEA, modified with platinum nanoparticles/IrOx nanocomposites, exhibits exceptional characteristics, featuring low impedance, minimal phase delay, substantial charge storage capacity, high double-layer capacitance, and longer in vivo lifetime, thereby enhancing the sensitivity of spike firing detection and electrical stimulation (ES) effectiveness. Using this MEA, sevoflurane-inhibited neurons and sevoflurane-excited neurons, together with changes in the oscillation characteristics of the local field potential within the DMH, are revealed as indicative markers of arousal states. During the arousal period, varying-frequency ESs are applied to the DMH, eliciting distinct arousal effects. Through in situ detection and stimulation, the disparity between these outcomes can be attributed to the influence of DBS on different neurons. These advancements may further our understanding of neural circuits and their potential applications in clinical contexts.

3.
Article in English | MEDLINE | ID: mdl-38656860

ABSTRACT

In neurodegenerative disorders, neuronal firing patterns and oscillatory activity are remarkably altered in specific brain regions, which can serve as valuable biomarkers for the identification of deep brain regions. The subthalamic nucleus (STN) has been the primary target for DBS in patients with Parkinson's disease (PD). In this study, changes in the spike firing patterns and spectral power of local field potentials (LFPs) in the pre-STN (zona incerta, ZI) and post-STN (cerebral peduncle, cp) regions were investigated in PD rats, providing crucial evidence for the functional localization of the STN. Sixteen-channel microelectrode arrays (MEAs) with sites distributed at different depths and widths were utilized to record neuronal activities. The spikes in the STN exhibited higher firing rates than those in the ZI and cp. Furthermore, the LFP power in the delta band in the STN was the greatest, followed by that in the ZI, and was greater than that in the cp. Additionally, increased LFP power was observed in the beta bands in the STN. To identify the best performing classification model, we applied various convolutional neural networks (CNNs) based on transfer learning to analyze the recorded raw data, which were processed using the Gram matrix of the spikes and the fast Fourier transform of the LFPs. The best transfer learning model achieved an accuracy of 95.16%. After fusing the spike and LFP classification results, the time precision for processing the raw data reached 500 ms. The pretrained model, utilizing raw data, demonstrated the feasibility of employing transfer learning for training models on neural activity. This approach highlights the potential for functional localization within deep brain regions.


Subject(s)
Deep Brain Stimulation , Microelectrodes , Rats, Sprague-Dawley , Subthalamic Nucleus , Subthalamic Nucleus/physiopathology , Animals , Rats , Male , Disease Models, Animal , Parkinson Disease/physiopathology , Parkinson Disease/rehabilitation , Action Potentials/physiology , Algorithms , Computer Systems , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/rehabilitation , Machine Learning
4.
Front Bioeng Biotechnol ; 12: 1376151, 2024.
Article in English | MEDLINE | ID: mdl-38633666

ABSTRACT

The striatum plays a crucial role in studying epilepsy, as it is involved in seizure generation and modulation of brain activity. To explore the complex interplay between the striatum and epilepsy, we engineered advanced microelectrode arrays (MEAs) specifically designed for precise monitoring of striatal electrophysiological activities in rats. These observations were made during and following seizure induction, particularly three and 7 days post-initial modeling. The modification of graphene oxide (GO)/poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/platinu-m nanoparticles (PtNPs) demonstrated a marked reduction in impedance (10.5 ± 1.1 kΩ), and maintained exceptional stability, with impedance levels remaining consistently low (23 kΩ) even 14 days post-implantation. As seizure intensity escalated, we observed a corresponding increase in neuronal firing rates and local field potential power, with a notable shift towards higher frequency peaks and augmented inter-channel correlation. Significantly, during the grand mal seizures, theta and alpha bands became the dominant frequencies in the local field potential. Compared to the normal group, the spike firing rates on day 3 and 7 post-modeling were significantly higher, accompanied by a decreased firing interval. Power in both delta and theta bands exhibited an increasing trend, correlating with the duration of epilepsy. These findings offer valuable insights into the dynamic processes of striatal neural activity during the initial and latent phases of temporal lobe epilepsy and contribute to our understanding of the neural mechanisms underpinning epilepsy.

5.
Biosens Bioelectron ; 253: 116168, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452571

ABSTRACT

Burst and local field potential (LFP) are fundamental components of brain activity, representing fast and slow rhythms, respectively. Understanding the intricate relationship between burst and LFP is crucial for deciphering the underlying mechanisms of brain dynamics. In this study, we fabricated high-performance microelectrode arrays (MEAs) using the SWCNTs/PEDOT:PSS nanocomposites, which exhibited favorable electrical properties (low impedance: 12.8 ± 2.44 kΩ) and minimal phase delay (-11.96 ± 1.64°). These MEAs enabled precise exploration of the burst-LFP interaction in cultured cortical networks. After a 14-day period of culture, we used the MEAs to monitor electrophysiological activities and revealed a time-locking relationship between burst and LFP, indicating the maturation of the neural network. To further investigate this relationship, we modulated burst firing patterns by treating the neural culture with increasing concentrations of glycine. The results indicated that glycine effectively altered burst firing patterns, with both duration and spike count increasing as the concentration rose. This was accompanied by an enhanced level of time-locking between burst and LFP but a decrease in synchrony among neurons. This study not only highlighted the pivotal role of SWCNTs/PEDOT:PSS-modified MEAs in elucidating the interaction between burst and LFP, bridging the gap between slow and fast brain rhythms in vitro but also provides valuable insights into the potential therapeutic strategies targeting neurological disorders associated with abnormal rhythm generation.


Subject(s)
Biosensing Techniques , Nanocomposites , Microelectrodes , Neurons/physiology , Glycine
6.
J Zhejiang Univ Sci B ; : 1-21, 2024 Feb 12.
Article in English, Chinese | MEDLINE | ID: mdl-38423536

ABSTRACT

Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.

7.
ACS Sens ; 8(12): 4765-4773, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38015643

ABSTRACT

The functioning of place cells requires the involvement of multiple neurotransmitters, with dopamine playing a critical role in hippocampal place cell activity. However, the exact mechanisms through which dopamine influences place cell activity remain largely unknown. Herein, we present the development of the integrated three-electrode dual-mode detection chip (ITDDC), which enables simultaneous recording of the place cell activity and dopamine concentration fluctuation. The working electrode, reference electrode, and counter electrode are all integrated within the ITDDC in electrochemical detection, enabling the real-time in situ monitoring of dopamine concentrations in animals in motion. The reference, working, and counter electrodes are surface-modified using PtNPs and polypyrrole, PtNPs and PEDOT:PSS, and PtNPs, respectively. This modification allows for the detection of dopamine concentrations as low as 20 nM. We conducted dual-mode testing on mice in a novel environment and an environment with food rewards. We found distinct dopamine concentration variations along different paths within a novel environment, implying that different dopamine levels may contribute to spatial memory. Moreover, environmental food rewards elevate dopamine significantly, followed by the intense firing of reward place cells, suggesting a crucial role of dopamine in facilitating the encoding of reward-associated locations in animals. The real-time and in situ recording capabilities of ITDDC offer new opportunities to investigate the interplay between electrophysiology and dopamine during animal exploration and reward-based memory and provide a novel glimpse into the correlation between dopamine levels and place cell activity.


Subject(s)
Dopamine , Place Cells , Mice , Animals , Polymers , Pyrroles , Electrodes , Reward
8.
Research (Wash D C) ; 6: 0229, 2023.
Article in English | MEDLINE | ID: mdl-37719050

ABSTRACT

Epilepsy severely impairs the cognitive behavior of patients. It remains unclear whether epilepsy-induced cognitive impairment is associated with neuronal activities in the medial entorhinal cortex (MEC), a region known for its involvement in spatial cognition. To explore this neural mechanism, we recorded the spikes and local field potentials from MEC neurons in lithium-pilocarpine-induced epileptic rats using self-designed microelectrode arrays. Through the open field test, we identified spatial cells exhibiting spatially selective firing properties and assessed their spatial representations in relation to the progression of epilepsy. Meanwhile, we analyzed theta oscillations and theta modulation in both excitatory and inhibitory neurons. Furthermore, we used a novel object recognition test to evaluate changes in spatial cognitive ability of epileptic rats. After the epilepsy modeling, the spatial tuning of various types of spatial cells had suffered a rapid and pronounced damage during the latent period (1 to 5 d). Subsequently, the firing characteristics and theta oscillations were impaired. In the chronic period (>10 d), the performance in the novel object experiment deteriorated. In conclusion, our study demonstrates the detrimental effect on spatial representations and electrophysiological properties of MEC neurons in the epileptic latency, suggesting the potential use of these changes as a "functional biomarker" for predicting cognitive impairment caused by epilepsy.

9.
Micromachines (Basel) ; 14(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37420942

ABSTRACT

Recent years have witnessed a spurt of progress in the application of the encoding and decoding of neural activities to drug screening, diseases diagnosis, and brain-computer interactions. To overcome the constraints of the complexity of the brain and the ethical considerations of in vivo research, neural chip platforms integrating microfluidic devices and microelectrode arrays have been raised, which can not only customize growth paths for neurons in vitro but also monitor and modulate the specialized neural networks grown on chips. Therefore, this article reviews the developmental history of chip platforms integrating microfluidic devices and microelectrode arrays. First, we review the design and application of advanced microelectrode arrays and microfluidic devices. After, we introduce the fabrication process of neural chip platforms. Finally, we highlight the recent progress on this type of chip platform as a research tool in the field of brain science and neuroscience, focusing on neuropharmacology, neurological diseases, and simplified brain models. This is a detailed and comprehensive review of neural chip platforms. This work aims to fulfill the following three goals: (1) summarize the latest design patterns and fabrication schemes of such platforms, providing a reference for the development of other new platforms; (2) generalize several important applications of chip platforms in the field of neurology, which will attract the attention of scientists in the field; and (3) propose the developmental direction of neural chip platforms integrating microfluidic devices and microelectrode arrays.

10.
Microsyst Nanoeng ; 9: 70, 2023.
Article in English | MEDLINE | ID: mdl-37275263

ABSTRACT

Threatened animals respond with appropriate defensive behaviors to survive. It has been accepted that midbrain periaqueductal gray (PAG) plays an essential role in the circuitry system and organizes defensive behavioral responses. However, the role and correlation of different PAG subregions in the expression of different defensive behaviors remain largely unexplored. Here, we designed and manufactured a microelectrode array (MEA) to simultaneously detect the activities of dPAG and vPAG neurons in freely behaving rats. To improve the detection performance of the MEAs, PtNP/PEDOT:PSS nanocomposites were modified onto the MEAs. Subsequently, the predator odor was used to induce the rat's innate fear, and the changes and information transmission in neuronal activities were detected in the dPAG and vPAG. Our results showed that the dPAG and vPAG participated in innate fear, but the activation degree was distinct in different defense behaviors. During flight, neuronal responses were stronger and earlier in the dPAG than the vPAG, while vPAG neurons responded more strongly during freezing. By applying high-performance MEA, it was revealed that neural information spread from the activated dPAG to the weakly activated vPAG. Our research also revealed that dPAG and vPAG neurons exhibited different defensive discharge characteristics, and dPAG neurons participated in the regulation of defense responses with burst-firing patterns. The slow activation and continuous firing of vPAG neurons cooresponded with the regulation of long-term freezing responses. The results demonstrated the important role of PAG neuronal activities in controlling different aspects of defensive behaviors and provided novel insights for investigating defense from the electrophysiological perspective.

11.
Biosensors (Basel) ; 13(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37232857

ABSTRACT

The electrophysiological activities of head direction (HD) cells under visual and vestibular input dissociation are important to understanding the formation of the sense of direction in animals. In this paper, we fabricated a PtNPs/PEDOT:PSS-modified MEA to detect changes in the discharge of HD cells under dissociated sensory conditions. The electrode shape was customized for the retrosplenial cortex (RSC) and was conducive to the sequential detection of neurons at different depths in vivo when combined with a microdriver. The recording sites of the electrode were modified with PtNPs/PEDOT:PSS to form a three-dimensional convex structure, leading to closer contact with neurons and improving the detection performance and signal-to-noise ratio of the MEA. We designed a rotating cylindrical arena to separate the visual and vestibular information of the rats and detected the changes in the directional tuning of the HD cells in the RSC. The results showed that after visual and vestibular sensory dissociation, HD cells used visual information to establish newly discharged directions which differed from the original direction. However, with the longer time required to process inconsistent sensory information, the function of the HD system gradually degraded. After recovery, the HD cells reverted to their newly established direction rather than the original direction. The research based on our MEAs revealed how HD cells process dissociated sensory information and contributes to the study of the spatial cognitive navigation mechanism.


Subject(s)
Gyrus Cinguli , Animals , Rats , Microelectrodes , Neurons/physiology
12.
BMC Pediatr ; 23(1): 168, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37046298

ABSTRACT

BACKGROUND: Subchromosomal deletions and duplications are the leading cause of congenital malformations and mental retardation in children. With the recent clinical application of genomic microarrays in the evaluation of patients with developmental delays and congenital malformations, it has led to the discovery of several new microdeletion and microduplication syndromes. However, there are no published reports involving patients with both microduplications in the 9p21.1-p24.3 region and microdeletions in the 7p22.1-p22.3 region. CASE PRESENTATION: We report an infant with an autosomal abnormality confirmed by conventional karyotype combined with copy number variations sequencing (CNV-seq), showing the patient with an unbalanced translocation. The karyotype of the patient was 46, XX, der (7)t (7;9) (p22; p21) and CNV-seq results showed an approximately 32.34-Mb duplication in 9p21.1-p24.3 (200000-32540000) and an approximately 3.3-Mb deletion in 7p22.2-p22.3 (40000-3340000). CONCLUSIONS: The patient carried an unbalanced translocation 46, XX, der (7)t (7;9) (p22; p21) derived from her mother. The clinical presentation is closely related to the size and position of the missing and duplicated chromosomes. To our knowledge, the simultaneous occurrence of de novo partial trisomy 9p(9p21.1-p24.3) and partial monosomy 7p (7p22.2-p22.3) has not previously been reported up until now. The present study additionally demonstrated that CNV-seq combined with karyotype is able to reliably detect unbalanced submicroscopic chromosomal aberrations.


Subject(s)
Chromosome Deletion , Trisomy , Child , Female , Humans , Infant , Trisomy/diagnosis , Trisomy/genetics , DNA Copy Number Variations , Translocation, Genetic , Mothers
13.
ACS Sens ; 8(4): 1810-1818, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37014663

ABSTRACT

Precise and directional couplings of functional nanomaterials with implantable microelectrode arrays (IMEAs) are critical for the manufacture of sensitive enzyme-based electrochemical neural sensors. However, there is a gap between the microscale of IMEA and conventional bioconjugation techniques for enzyme immobilization, which leads to a series of challenges such as limited sensitivity, signal crosstalk, and high detection voltage. Here, we developed a novel method using carboxylated graphene oxide (cGO) to directionally couple the glutamate oxidase (GluOx) biomolecules onto the neural microelectrode to monitor glutamate concentration and electrophysiology in the cortex and hippocampus of epileptic rats under RuBi-GABA modulation. The resulting glutamate IMEA exhibited good performance involving less signal crosstalk between microelectrodes, lower reaction potential (0.1 V), and higher linear sensitivity (141.00 ± 5.66 nA µM-1 mm-2). The excellent linearity ranged from 0.3 to 68 µM (R = 0.992), and the limit of detection was 0.3 µM. For epileptic rats, the proposed IMEA sensitively obtained synergetic variations in the action potential (Spike), local field potentials (LFPs), and glutamate of the cortex and hippocampus during seizure and RuBi-GABA inhibition. We found that the increase in glutamate preceded the burst of electrophysiological signals. At the same time, both changes in the hippocampus preceded the cortex. This reminded us that glutamate changes in the hippocampus could serve as important indicators for early warning of epilepsy. Our findings provided a new technical strategy for directionally stabilizing enzymes onto the IMEA with versatile implications for various biomolecules' modification and facilitated the development of detecting tools for understanding the neural mechanism.


Subject(s)
Epilepsy , Hippocampus , Rats , Animals , Microelectrodes , Rats, Sprague-Dawley , Hippocampus/physiology , Glutamic Acid , gamma-Aminobutyric Acid/pharmacology
14.
ACS Appl Bio Mater ; 6(3): 1260-1271, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36884222

ABSTRACT

Hypoglycemia state damages the organism, and glucose-excited and glucose-inhibited neurons from the ventral medial hypothalamus can regulate this state. Therefore, it is crucial to understand the functional mechanism between blood glucose and electrophysiology of glucose-excited and glucose-inhibited neurons. To better detect and analyze this mechanism, a PtNPs/PB nanomaterials modified 32-channel microelectrode array with low impedance (21.91 ± 6.80 kΩ), slight phase delay (-12.7° ± 2.7°), high double layer capacitance (0.606 µF), and biocompatibility was developed to realize in vivo real-time detection of the electrophysiology activities of glucose-excited and glucose-inhibited neurons. The phase-locking level of some glucose-inhibited neurons elevated during fasting (low blood glucose state) and showed theta rhythms after glucose injection (high blood glucose state). With an independent oscillating ability, glucose-inhibited neurons can provide an essential indicator to prevent severe hypoglycemia. The results reveal a mechanism for glucose-sensitive neurons to respond to blood glucose. Some glucose-inhibited neurons can integrate glucose information input and convert it into theta oscillating or phase lock output. It helps in enhancing the interaction between neurons and glucose. Therefore, the research can provide a basis for further controlling blood glucose by modulating the characteristics of neuronal electrophysiology. This helps reduce the damage of organisms under energy-limiting conditions, such as prolonged manned spaceflight or metabolic disorders.


Subject(s)
Hypoglycemia , Nanocomposites , Humans , Glucose/pharmacology , Blood Glucose/metabolism , Microelectrodes , Neurons/metabolism , Hypoglycemia/diagnosis , Hypoglycemia/metabolism
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(1): 104-108, 2023 Jan 15.
Article in Chinese | MEDLINE | ID: mdl-36655672

ABSTRACT

About 3% of pregnant women suffer from chronic kidney disease (CKD). This article reviews the literature on the outcomes of neonates born to mothers with CKD (including those undergoing dialysis and kidney transplantation), and the results show that CKD during pregnancy may increase the risk of preterm birth, low birth weight, and small for gestational age infant, but it does not increase the risk of congenital anomalies. As for long-term outcomes, CKD during pregnancy has no significant impact on offspring's physical development and immune function. Neurodevelopmental outcome of offspring is associated with preterm birth and low birth weight, rather than intrauterine drug exposure. However, further research and follow-up are needed to investigate the outcome of neonates born to mothers with CKD.


Subject(s)
Premature Birth , Renal Insufficiency, Chronic , Infant , Infant, Newborn , Pregnancy , Female , Humans , Birth Weight , Mothers , Renal Insufficiency, Chronic/therapy , Infant, Small for Gestational Age
16.
Microsyst Nanoeng ; 8: 104, 2022.
Article in English | MEDLINE | ID: mdl-36124081

ABSTRACT

Grid cells with stable hexagonal firing patterns in the medial entorhinal cortex (MEC) carry the vital function of serving as a metric for the surrounding environment. Whether this mechanism processes only spatial information or involves nonspatial information remains elusive. Here, we fabricated an MEC-shaped microelectrode array (MEA) to detect the variation in neural spikes and local field potentials of the MEC when rats forage in a square enclosure with a planar, three-dimensional object and social landmarks in sequence. The results showed that grid cells exhibited rate remapping under social conditions in which spike firing fields closer to the social landmark had a higher firing rate. Furthermore, global remapping showed that hexagonal firing patterns were rotated and scaled when the planar landmark was replaced with object and social landmarks. In addition, when grid cells were activated, the local field potentials were dominated by the theta band (5-8 Hz), and spike phase locking was observed at troughs of theta oscillations. Our results suggest the pattern separation mechanism of grid cells in which the spatial firing structure and firing rate respond to spatial and social information, respectively, which may provide new insights into how the brain creates a cognitive map.

17.
Biosens Bioelectron ; 217: 114726, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36174358

ABSTRACT

Place cells establish rapid mapping relationships between the external environment and themselves in a new context. However, the mapping relationships of environmental cues to place cells in short-term memory is still completely unknown. In this work, we designed a silicon-based motion microelectrode array (mMEA) and an implantation device to record electrophysiological signals of place cells in CA1, CA3, and DG regions in the hippocampus of ten mice in motion, and investigated the corresponding place fields under distal or local cues in just a few minutes. The mMEA can expand the detection area and greatly lower the motion noise. Finding and recording place cells of moving mice in short-term memory is made possible by the mMEA. The place-related cells were found for the first time. Unlike place cells, which only fire in a particular position of the environment, place-related cells fire in numerous areas of the environment. Furthermore, place cells in the CA1 and CA3 have the most stable place memory for time-preferred single cues, and they fire in concert with place-related cells during short-term memory dynamics, whereas place cells in the DG regions have overlapping and unstable place memory in a multi-cue context. These results demonstrate the consistency of place cells in CA1 and CA3 and reflect their different roles in spatial memory processing during familiarization with new environments. The mMEA provides a platform for studying the place cells of short-term memory.


Subject(s)
Biosensing Techniques , Place Cells , Animals , Hippocampus , Memory, Short-Term , Mice , Microelectrodes , Neurons/physiology , Rats , Rats, Long-Evans , Silicon
18.
Front Neurosci ; 16: 868235, 2022.
Article in English | MEDLINE | ID: mdl-35620664

ABSTRACT

The medial amygdala (MA) plays an important role in the innate fear circuit. However, the electrophysiological mechanism of MA for processing innate fear needs to be further explored. In this study, we fabricated microelectrode arrays (MEAs) with detecting sites arranged to match the location and shape of MA in mice and detected the electrophysiology in freely behaving mice under 2-methyl-2-thiazoline (2MT)-induced fear. The detection performance of MEA is improved by modifying metal nanoparticles and conductive polymers (PtNPs/PEDOT:PSS). After modification, the impedance magnitude and phase of electrodes were decreased to 27.0 ± 2.3 kΩ and -12.30 ± 0.52°, respectively, leading to a signal-to-noise ratio of 10. Its electrochemical stability and mechanical stability were also verified by cyclic voltammetry (CV) sweeping and ultrasonic vibration. MEAs were then implanted into the MA of mice, and the electrophysiology and behavioral characteristics were synchronously recorded and analyzed. The results showed that 2MT induced strong defensive behaviors in mice, accompanied by increases in the average spike firing rate and local field potential (LFP) power of MA neurons. According to principles commonly applied to cortical extracellular recordings, the recorded neurons are divided into two classes based on waveforms. Statistics showed that about 37% of type 1 neurons (putative GABAergic neurons) and 87% of type 2 neurons (putative glutamatergic neurons) were significantly activated under innate fear. At the same time, the firing rate of some activated neurons had a good linear correlation with the freezing rate.

19.
Biosensors (Basel) ; 12(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35448253

ABSTRACT

Defense is the basic survival mechanism of animals when facing dangers. Previous studies have shown that the midbrain periaqueduct gray (PAG) was essential for the production of defense responses. However, the correlation between the endogenous neuronal activities of the dorsal PAG (dPAG) and different defense behaviors was still unclear. In this article, we designed and manufactured microelectrode arrays (MEAs) whose detection sites were arranged to match the shape and position of dPAG in rats, and modified it with platinum-black nanoparticles to improve the detection performance. Subsequently, we successfully recorded the electrophysiological activities of dPAG neurons via designed MEAs in freely behaving rats before and after exposure to the potent analog of predator odor 2-methyl-2-thiazoline (2-MT). Results demonstrated that 2-MT could cause strong innate fear and a series of defensive behaviors, accompanied by the significantly increased average firing rate and local field potential (LFP) power of neurons in dPAG. We also observed that dPAG participated in different defense behaviors with different degrees of activation, which was significantly stronger in the flight stage. Further analysis showed that the neuronal activities of dPAG neurons were earlier than flight, and the intensity of activation was inversely proportional to the distance from predator odor. Overall, our results indicate that dPAG neuronal activities play a crucial role in controlling different types of predator odor-evoked innate fear/defensive behaviors, and provide some guidance for the prediction of defense behavior.


Subject(s)
Fear , Periaqueductal Gray , Animals , Fear/physiology , Microelectrodes , Neurons , Periaqueductal Gray/physiology , Rats
20.
Biosens Bioelectron ; 209: 114263, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35483214

ABSTRACT

Clinical transplantation of human embryonic stem cells derived dopaminergic neurons (hESC-DDNs) is expected to be a potential therapy for treating neurodegenerative diseases. However, the assessment of the physiological functions, including electrophysiology and dopamine (DA) vesicular exocytosis of hESC-DDNs are not impeccable currently, which deeply limits the clinical application of hESC-DDNs. To overcome this challenge, we developed a multifunctional microelectrode array (MEA) which can detect both electrophysiological signals and DA vesicular exocytosis. The reduced oxidation graphene, poly(3,4-ethylenedioxythiophene) and poly (sodium-4-styrenesultanate) nanocomposites (rGO/PEDOT:PSS) were electrochemically deposited on the MEAs to improve their electrical characterizations with low impedance and small phase delay, and electrochemical characterizations with low oxidation potential, low detection limit, high sensitivity, wide linear range and high sensitivity. In the hESC-DDNs experiment, the modified MEA could detect electrophysiological signals with low noise (25 µV) and high signal-to-noise ratio (>5.4), and the weak current signals generated by DA vesicular exocytosis with high sensitivity (∼pA), high time resolution (sub-millisecond) and low noise (3 pA). Moreover, due to increased accuracy, the MEA could clearly distinguish two typical kinds of exocytosis spike events ("Spikes with foot" and "Spikes without foot") and found that the slow and low release through the fusion pore was an important mode of DA vesicular exocytosis in hESC-DDNs. Our work proved that the hESC-DDNs had the basic physiological functions as human dopaminergic neurons, which would be beneficial to the clinical application of the hESC-DDNs.


Subject(s)
Biosensing Techniques , Human Embryonic Stem Cells , Dopamine , Dopaminergic Neurons , Electrophysiology , Exocytosis , Humans , Microelectrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...