Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Plant Sci ; 13: 1027227, 2022.
Article in English | MEDLINE | ID: mdl-36407618

ABSTRACT

Salinity stress is one of the major constraints to plant growth and crop production. Optimum fertilizer management is essential for promoting crop growth and productivity in saline soils. A field experiment was conducted to study the effects of nitrogen and phosphate combination on sesbania pea (Sesbania cannabina (Retz.) Poir.) growth and associated physiology in saline soils. Three N rates (N1: 240 kg·ha-1, N2: 360 kg·ha-1, N3: 480 kg·ha-1) and two P rates (P1: 120 kg·ha-1, P2:180 kg·ha-1) were arranged in this study using a RCBD with 3 replicates. The application of N and P fertilizers significantly improved plant growth and associated physiological traits of sesbania pea. Plant height (P=0.0001), fresh biomass weight (P=0.0006), dry biomass weight (P=0.0006), relative growth rate (RGR) (P=0.005), chlorophyll (P=0.002), peroxidase (POD) (P=0.0003), catalase (CAT) (P=0.0001), superoxide dismutase (SOD) (P=0.0001) and soluble protein (P=0.0053) were significantly increased, and the maximum values were consistently produced under N2P2 combination at each growth stage. On the contrary, malondialdehyde (MDA) was prominently decreased by N and P fertilizer application (P=0.0029), and the lowest values were all produced under N2P2 combination. The highest values of plant height, fresh biomass weight and dry biomass weight were recorded on the 163rd day after seeding (DAS). The highest RGR and MDA content were determined on the 141st DAS. The highest chlorophyll content, CAT and SOD activity, and soluble protein content were recorded on the 110th DAS, and the highest POD activity was at 47 DAS. This study suggested that the optimum N and P fertilizer combination was N2P2 (360 kg·hm-2 N + 180 kg·hm-2 P), which was superior in promoting growth and biomass yield with enhanced antioxidant capacity of sesbania pea in saline soils.

2.
Nat Commun ; 13(1): 6356, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289225

ABSTRACT

Gut dysbiosis has been linked to type 1 diabetes (T1D); however, microbial capacity in T1D remains unclear. Here, we integratively profiled gut microbial functional and metabolic alterations in children with new-onset T1D in independent cohorts and investigated the underlying mechanisms. In T1D, the microbiota was characterized by decreased butyrate production and bile acid metabolism and increased lipopolysaccharide biosynthesis at the species, gene, and metabolite levels. The combination of 18 bacterial species and fecal metabolites provided excellently discriminatory power for T1D. Gut microbiota from children with T1D induced elevated fasting glucose levels and declined insulin sensitivity in antibiotic-treated mice. In streptozotocin-induced T1D mice, butyrate and lipopolysaccharide exerted protective and destructive effects on islet structure and function, respectively. Lipopolysaccharide aggravated the pancreatic inflammatory response, while butyrate activated Insulin1 and Insulin2 gene expression. Our study revealed perturbed microbial functional and metabolic traits in T1D, providing potential avenues for microbiome-based prevention and intervention for T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Mice , Animals , Gastrointestinal Microbiome/physiology , Diabetes Mellitus, Type 1/genetics , Lipopolysaccharides/pharmacology , Streptozocin , Butyrates/pharmacology , Anti-Bacterial Agents/pharmacology , Bile Acids and Salts/pharmacology , Glucose/pharmacology
3.
World J Pediatr ; 18(10): 671-679, 2022 10.
Article in English | MEDLINE | ID: mdl-35902493

ABSTRACT

BACKGROUND: The real-world exposure levels of non-therapeutic antibiotics and neonicotinoids in type 1 diabetes (T1D) children and their associations as environmental triggers through gut microbiota shifts remained unknown. We thus investigated the antibiotics and neonicotinoids' exposure levels and their associations with gut microbiota in pediatric T1D. METHODS: Fifty-one newly onset T1D children along with 67 age-matched healthy controls were recruited. Urine concentrations of 28 antibiotics and 12 neonicotinoids were measured by mass spectrometry. Children were grouped according to the kinds of antibiotics' and neonicotinoids' exposures, respectively. The 16S rRNA of fecal gut microbiota was sequenced, and the correlation with urine antibiotics and neonicotinoids' concentrations was analyzed. RESULTS: The overall detection rates of antibiotics were 72.5% and 61.2% among T1D and healthy children, whereas the neonicotinoids detection rates were 70.6% and 52.2% (P = 0.044). Children exposed to one kind of antibiotic or two or more kinds of neonicotinoids had higher risk of T1D, with the odd ratios of 2.579 and 3.911. Furthermore, co-exposure to antibiotics and neonicotinoids was associated with T1D, with the odd ratio of 4.924. Antibiotics or neonicotinoids exposure did not affect overall richness and diversity of gut microbiota. However, children who were exposed to neither antibiotics nor neonicotinoids had higher abundance of Lachnospiraceae than children who were exposed to antibiotics and neonicotinoids alone or together. CONCLUSION: High antibiotics and neonicotinoids exposures were found in T1D children, and they were associated with changes in gut microbiota featured with lower abundance of butyrate-producing genera, which might increase the risk of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Anti-Bacterial Agents/adverse effects , Butyrates , Child , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/epidemiology , Humans , Neonicotinoids , RNA, Ribosomal, 16S/genetics
4.
Front Endocrinol (Lausanne) ; 13: 859245, 2022.
Article in English | MEDLINE | ID: mdl-35721754

ABSTRACT

Introduction: Lifestyle changes including COVID-19 lockdown cause weight gain and may change obesity trends; however, timely changes are largely unknown and monitoring measures are usually lack. This first large-scale study aimed to analyze the real-world national trends of obesity prevalence of Chinese children in the past five years, and the impact of COVID-19 pandemic on pediatric obesity development through both mobile- and hospital-based data. Methods: This study included children aged 3 to 19 years old all over China from January 2017 to April 2021. Hospital-measured and parent-reported cases from XIGAO database were analyzed. Body mass index (BMI) z-score calculation and obesity status evaluation were made according to Chinese standards. We evaluated obesity/overweight prevalence over the past five years and the changes of BMI z-score during COVID-19 lockdown. Results: A total of 656396 children from 31 provinces were involved, including 447481 hospital-measured cases and 208915 parent-reported cases. The obesity and overweight prevalence were 8.05% (95%CI 7.76%-8.39%) and 10.06% (95%CI 10.79%-11.55%), comparable to those of China National Nutrition Surveys during 2015-2019. Northern China had the highest obesity prevalence. Parent-reported data had higher obesity/overweight prevalence than hospital-measured data (18.3% [95%CI 17.7%-18.9%] vs. 21.7% [95%CI 20.7%-23.0%]). The trend of obesity prevalence remained stable with slight decrease, but COVID-19 lockdown caused a significant increase of 1.86% in 2020. Both mobile- and hospital-based data showed weight gain in the first half of 2020. High BMI z-score increase were found among primary and junior middle school children, and children in northeast area during lockdown. Conclusion: Weight gain during COVID-19 among Chinese children had regional differences and mainly affect primary and junior middle school children, thus warrants targeted interventions. The mobile growth assessment based on parent-reported data was a feasible, efficient and timely way for obesity monitoring among Chinese children, especially during epidemic.


Subject(s)
COVID-19 , Pediatric Obesity , Adolescent , Adult , Body Mass Index , COVID-19/epidemiology , Child , Child, Preschool , China/epidemiology , Communicable Disease Control , Hospitals , Humans , Overweight/epidemiology , Pandemics , Pediatric Obesity/epidemiology , Weight Gain , Young Adult
6.
World J Diabetes ; 12(8): 1292-1303, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34512894

ABSTRACT

BACKGROUND: In addition to insulin resistance, impaired insulin secretion has recently been identified as a crucial factor in the pathogenesis of type 2 diabetes mellitus (T2DM). Scarce clinical data exist for pediatric T2DM. AIM: To investigate the association of ß-cell function and insulin resistance with pediatric T2DM in the first Chinese multicenter study. METHODS: This multicenter cross-sectional study included 161 newly diagnosed T2DM children and adolescents between January 2017 and October 2019. Children with normal glycemic levels (n = 1935) were included as healthy control subjects. The homeostasis models (HOMAs) were used to assess the ß-cell function (HOMA2-%B) and insulin resistance (HOMA2-IR) levels. The HOMA index was standardized by sex and age. We performed logistic regression analysis to obtain odds ratios (ORs) for T2DM risk using the standardized HOMA index, adjusted for confounding factors including sex, Tanner stage, T2DM family history, body mass index z-score, and lipid profile. RESULTS: The male-female ratio of newly diagnosed T2DM patients was 1.37:1 (OR = 2.20, P = 0.011), and the mean ages of onset for boys and girls were 12.5 ± 1.9 years and 12.3 ± 1.7 years, respectively. The prevalence of related comorbidities including obesity, elevated blood pressure, and dyslipidemia was 58.2%, 53.2%, and 80.0%, respectively. The T2DM group had lower HOMA2-%B levels (P < 0.001) and higher HOMA2-IR levels (P < 0.001) than the control group. Both the decrease in HOMA2-%B z-score (OR = 8.40, 95%CI: 6.40-11.02, P < 0.001) and the increase in HOMA2-IR z-score (OR = 1.79, 95%CI: 1.60-2.02, P < 0.001) were associated with a higher risk of T2DM, and the decrease in HOMA2-%B z-score always had higher ORs than the increase in HOMA2-IR z-score after adjusting for confounding factors. CONCLUSION: Besides insulin resistance, ß-cell function impairment is also strongly associated with Chinese pediatric T2DM. Gender difference in susceptibility and high comorbidities warrant specific T2DM screening and prevention strategies in Chinese children.

7.
Growth Horm IGF Res ; 60-61: 101423, 2021.
Article in English | MEDLINE | ID: mdl-34375817

ABSTRACT

BACKGROUND: Isolated growth hormone deficiency (IGHD) due to mutations in GH1 gene is a rare disease caused by deficient production of endogenous growth hormone (GH). METHODS: We reported the clinical manifestation and genetic diagnosis (whole exome sequencing [WES], nested PCR Sanger sequencing, and rtPCR) of a family with two children with IGHD type I. We conducted a systematic review of cases with IGHD and compared height, and treatment outcomes in subtypes of IGHD. RESULTS: The patients were siblings born of nonconsanguineous parents from the Chinese Han population. The siblings both presented significantly short stature without other apparent abnormalities. The patients carry compound heterozygous mutations in GH1: a deletion and c.456 + 1G > A mutation that led to abnormal splicing. The systematic review identified 365 IGHD cases with GH1 mutations. Among these patients, their body height was most severely impaired in patients with IGHD type Ia, and the height standard deviation score decreased with the age of diagnosis in IGHD type Ia. Patients with IGHD type II had the longest duration of rhGH treatment, while patients with IGHD type Ib had the highest relative height improvement. CONCLUSION: We identified two patients with IGHD type I caused by compound heterozygotic GH1 deletion and splicing mutation. The analysis of previously published IGHD patients suggests differences in linear growth among subtypes of IGHD.


Subject(s)
Dwarfism, Pituitary/pathology , Dwarfism/pathology , Human Growth Hormone/genetics , Mutation , Pituitary Diseases/pathology , Child , Dwarfism/genetics , Dwarfism, Pituitary/genetics , Female , Human Growth Hormone/deficiency , Humans , Infant , Male , Pedigree , Pituitary Diseases/genetics , Prognosis
8.
Front Endocrinol (Lausanne) ; 12: 651589, 2021.
Article in English | MEDLINE | ID: mdl-33912137

ABSTRACT

Objectives: To explore the glycemic control [represented by glycated hemoglobin (HbA1c) concentrations] in children with diabetes mellitus (DM) in east China and middle- and low-income countries, from 2010 to 2019. Methods: Retrospective data of children with DM from two hospital-based health records were reviewed. Data on HbA1c concentrations, hospitalization due to diabetic ketoacidosis, and patient demographics were collected and analyzed. A systematic review was subsequently performed to analyze publications that report HbA1c concentrations in patients aged <18 years. Patients' characteristics extracted from each publication were used to generate simulated individual data for pooled analysis. HbA1c estimates were derived from steady-state iterations. Results: Data of 843 diabetic children (aged 11.2 ± 3.9 years) with 2,658 HbA1c measures were retrieved from the two hospitals during the period 2010-2020. The duration of diabetes in the patients was 4.4 ± 2.8 years, and their HbA1c was 8.1 ± 2.2%. Patients who were internal migrants had significantly higher HbA1c concentration than resident patients (8.4 vs. 7.9%). The literature review yielded 1,164 publications, and the majority (74.1%) of patient data were published in high-income countries. The patient data extracted from these publications generated 486,416 HbA1c concentration estimates between 2005 and 2019. The average HbA1c concentration during the 15 years was 9.07 ± 2.15%. The mean HbA1c concentrations among children were 8.23, 8.73, 9.20, and 10.11% in high-income country (HIC), upper-middle income country (UMIC), lower-middle income country (LMIC), and low-income country (LIC) respectively. The mean rate of optimized glycemic control (HbA1c <7.5%) among children was 32.4, 27.5, 21.7, and 12.7% in HIC, UMIC, LMIC, and LIC, respectively. Conclusions: The current study indicated that there is substantial room for improvement in glycemic control in children with DM worldwide, especially in middle- and low-income countries.


Subject(s)
Diabetes Mellitus/blood , Diabetes Mellitus/therapy , Glycated Hemoglobin/biosynthesis , Adolescent , Child , Child, Preschool , China/epidemiology , Data Collection , Diabetes Mellitus/epidemiology , Diabetic Ketoacidosis/complications , Electronic Health Records , Female , Hospitalization , Humans , Hypoglycemia/blood , Hypoglycemia/epidemiology , Infant , Infant, Newborn , Male , Models, Statistical , Retrospective Studies
9.
Front Endocrinol (Lausanne) ; 11: 577373, 2020.
Article in English | MEDLINE | ID: mdl-33133020

ABSTRACT

Background: In addition to inborn metabolic disorders, altered metabolic profiles were reported to be associated with the risk and prognosis of some non-metabolic diseases, while as a rare metabolic disease, the overall secondary metabolic spectrum in congenital hyperinsulinemic hypoglycemia (HH) is largely undetermined. Therefore, we investigated metabolic profiles in HH patients and used ketotic hypoglycemia (KH) patients as a control cohort to unveil their distinct metabolic features. Methods: A total of 97 hypoglycemia children, including 74 with hyperinsulinemic hypoglycemia and 23 with ketotic hypoglycemia, and 170 euglycemia control subjects were studied retrospectively. Clinical and biochemical data were collected. The normoglycemic spectra of amino acids and acylcarnitines were determined by liquid chromatography tandem mass spectrometry. The serum insulin and fatty acid concentrations during standardized fasting tests in hypoglycemia patients were also collected. Receiver operating characteristic curve analysis was performed to screen potential biomarkers. Results: Among the normoglycemic spectra of amino acids, blood valine (p < 0.001), arginine (p < 0.001), threonine (p = 0.001), glutamate (p = 0.002), methionine (p = 0.005), ornithine (p = 0.008), leucine (p = 0.014), alanine (p = 0.017), proline (p = 0.031), citrulline (p = 0.042), aspartate (p = 0.046), and glycine (p = 0.048) levels differed significantly among the three groups. Significantly decreased levels of long- (C14:1, p < 0.001; C18, p < 0.001), medium- (C8, p < 0.001; C10, p < 0.001; C10:1, p < 0.001), and short-chain (C4-OH, p < 0.001; C5OH, p < 0.001) acylcarnitines were found in the hyperinsulinemic hypoglycemia group. Hyperinsulinemic hypoglycemia children with focal lesions and diffuse lesions had similar amino acid and acylcarnitine spectra. C10:1 < 0.09 µmol/L, threonine > 35 µmol/L, and threonine/C10:1 > 440 showed sensitivities of 81.1, 66.2, and 81.1% and specificities of 72.7, 78.3, and 81.8%, respectively, in distinguishing HH from KH. Conclusions: We found significantly different altered serum amino acid and acylcarnitine profiles at normoglycemia, especially decreased C10:1 and increased threonine levels, between HH and KH children, which may reflect the insulin ketogenesis inhibition effect in HH patients; however, the detailed mechanisms and physiological roles remain to be studied in the future.


Subject(s)
Amino Acids/blood , Biomarkers/blood , Carnitine/analogs & derivatives , Congenital Hyperinsulinism/diagnosis , Hypoglycemia/diagnosis , Ketosis/diagnosis , Carnitine/blood , Case-Control Studies , Child, Preschool , Congenital Hyperinsulinism/blood , Female , Follow-Up Studies , Humans , Hypoglycemia/blood , Infant , Ketosis/blood , Male , Prognosis , Retrospective Studies
10.
World J Pediatr ; 15(4): 405-411, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30911992

ABSTRACT

BACKGROUND: The limited available studies have unveiled different natural histories and prognosis associated with pediatric type 2 diabetes (T2D) and adult T2D. To date, data on the clinical features, metabolic profiles and beta-cell function characteristics are still limited in the Chinese pediatric T2D population. METHODS: A total of 56 children with T2D, 31 with prediabetes and 159 with obesity were recruited. Clinical characteristics, metabolic profiles, beta-cell function and insulin resistance were analyzed. RESULTS: The mean onset age of T2D was 12.35 ± 1.99 (7.9-17.8) years, and 7% of children were younger than 10 years; 55% of them were male, 57% had a family history of diabetes and 64% had classic symptoms, and 25% had a low or high birth weight. 89% of T2D patients were obese or overweight. A total of 58% of the patients with prediabetes were male. The fast serum C-peptide level was highest in the obesity group (P < 0.001), and there was no significant difference between the T2D and prediabetes groups. The mean homeostatic model of assessment of beta-cell function was the highest in the obesity group and was lowest in the T2D group (P < 0.001). The T2D group had the most serious lipid metabolism disorder, with the highest levels of total triglycerides, total cholesterol, and low density lipoprotein and the lowest high density lipoprotein level among the three groups. CONCLUSIONS: A younger onset age and greater male susceptibility were found in Chinese pediatric T2D patients, and there was a stepwise deterioration trend in beta-cell function among patients with obesity, prediabetes and T2D. Based on our results, together with the SEARCH study results, an early screening and intervention program for T2D is recommended in high-risk or obese Chinese pediatric populations starting at 7 years.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Insulin-Secreting Cells/metabolism , Adolescent , Age of Onset , Child , China/epidemiology , Disease Progression , Female , Humans , Insulin Resistance , Male , Pediatric Obesity/epidemiology , Prognosis , Risk Factors , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...