Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 399
Filter
1.
J Agric Food Chem ; 72(19): 10794-10804, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711396

ABSTRACT

Chitin-degrading enzymes are critical components in regulating the molting process of the Asian corn borer and serve as potential targets for controlling this destructive pest of maize. Here, we used a scaffold-hopping strategy to design a series of efficient naphthylimide insecticides. Among them, compound 8c exhibited potent inhibition of chitinase from OfChi-h and OfChtI at low nanomolar concentrations (IC50 = 1.51 and 9.21 nM, respectively). Molecular docking simulations suggested that 8c binds to chitinase by mimicking the interaction of chitin oligosaccharide substrates with chitinase. At low ppm concentrations, compound 8c performed comparably to commercial insecticides in controlling the highly destructive plant pest, the Asian corn borer. Tests on a wide range of nontarget organisms indicate that compound 8c has very low toxicity. In addition, the effect of inhibitor treatment on the expression of genes associated with the Asian corn borer chitin-degrading enzymes was further investigated by quantitative real-time polymerase chain reaction. In conclusion, our study highlights the potential of 8c as a novel chitinase-targeting insecticide for effective control of the Asian corn borer, providing a promising solution in the quest for sustainable pest management.


Subject(s)
Chitin , Chitinases , Insect Proteins , Insecticides , Molecular Docking Simulation , Moths , Zea mays , Animals , Chitinases/chemistry , Chitinases/genetics , Chitinases/metabolism , Moths/enzymology , Moths/drug effects , Moths/genetics , Chitin/chemistry , Chitin/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Proteins/antagonists & inhibitors , Zea mays/chemistry , Zea mays/parasitology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Drug Design , Insect Control , Larva/growth & development , Larva/drug effects , Structure-Activity Relationship
2.
Angew Chem Int Ed Engl ; : e202405313, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738593

ABSTRACT

Three-dimensional covalent organic frameworks (3D COFs), recognized for their tailorable structures and accessible active sites, offer a promising platform for developing advanced photocatalysts. However, the difficulty in the synthesis and functionalization of 3D COFs hinders their further development. In this study, we present a series of 3D-bcu-COFs with 8 connected porphyrin units linked by linear linkers through imine bonds as a versatile platform for photocatalyst design. The photoresponse of 3D-bcu-COFs was initially modulated by functionalizing linear linkers with benzo-thiadiazole or benzo-selenadiazole groups. Furthermore, taking advantage of the well-exposed porphyrin and imine sites in 3D-bcu-COFs, their photocatalytic activity was optimized by stepwise protonation of imine bonds and porphyrin centers. The dual protonated COF with benzo-selenadiazole groups exhibited enhanced charge separation, leading to an increased photocatalytic H2O2 production under visible light. This enhancement demonstrates the combined benefits of linker functionalization and stepwise protonation on photocatalytic efficiency.

3.
Nat Commun ; 15(1): 4236, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762595

ABSTRACT

Hydroxide exchange membrane fuel cells (HEMFCs) have the advantages of using cost-effective materials, but hindered by the sluggish anodic hydrogen oxidation reaction (HOR) kinetics. Here, we report an atomically dispersed Ir on Mo2C nanoparticles supported on carbon (IrSA-Mo2C/C) as highly active and stable HOR catalysts. The specific exchange current density of IrSA-Mo2C/C is 4.1 mA cm-2ECSA, which is 10 times that of Ir/C. Negligible decay is observed after 30,000-cycle accelerated stability test. Theoretical calculations suggest the high HOR activity is attributed to the unique Mo2C substrate, which makes the Ir sites with optimized H binding and also provides enhanced OH binding sites. By using a low loading (0.05 mgIr cm-2) of IrSA-Mo2C/C as anode, the fabricated HEMFC can deliver a high peak power density of 1.64 W cm-2. This work illustrates that atomically dispersed precious metal on carbides may be a promising strategy for high performance HEMFCs.

4.
Article in English | MEDLINE | ID: mdl-38607716

ABSTRACT

Raw depth images captured in indoor scenarios frequently exhibit extensive missing values due to the inherent limitations of the sensors and environments. For example, transparent materials frequently elude detection by depth sensors; surfaces may introduce measurement inaccuracies due to their polished textures, extended distances, and oblique incidence angles from the sensor. The presence of incomplete depth maps imposes significant challenges for subsequent vision applications, prompting the development of numerous depth completion techniques to mitigate this problem. Numerous methods excel at reconstructing dense depth maps from sparse samples, but they often falter when faced with extensive contiguous regions of missing depth values, a prevalent and critical challenge in indoor environments. To overcome these challenges, we design a novel two-branch end-to-end fusion network named RDFC-GAN, which takes a pair of RGB and incomplete depth images as input to predict a dense and completed depth map. The first branch employs an encoder-decoder structure, by adhering to the Manhattan world assumption and utilizing normal maps from RGB-D information as guidance, to regress the local dense depth values from the raw depth map. The other branch applies an RGB-depth fusion CycleGAN, adept at translating RGB imagery into detailed, textured depth maps while ensuring high fidelity through cycle consistency. We fuse the two branches via adaptive fusion modules named W-AdaIN and train the model with the help of pseudo depth maps. Comprehensive evaluations on NYU-Depth V2 and SUN RGB-D datasets show that our method significantly enhances depth completion performance particularly in realistic indoor settings.

5.
World J Gastrointest Oncol ; 16(4): 1281-1295, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660643

ABSTRACT

BACKGROUND: Gastric cancer (GC) is the fifth most common and the fourth most lethal malignant tumour in the world. Most patients are already in the advanced stage when they are diagnosed, which also leads to poor overall survival. The effect of postoperative adjuvant chemotherapy for advanced GC is unsatisfactory with a high rate of distant metastasis and local recurrence. AIM: To investigate the safety and efficacy of a programmed cell death 1 (PD-1) inhibitor combined with oxaliplatin and S-1 (SOX) in the treatment of Borrmann large type III and IV GCs. METHODS: A retrospective analysis (IRB-2022-371) was performed on 89 patients with Borrmann large type III and IV GCs who received neoadjuvant therapy (NAT) from January 2020 to December 2021. According to the different neoadjuvant treatment regimens, the patients were divided into the SOX group (61 patients) and the PD-1 + SOX (P-SOX) group (28 patients). RESULTS: The pathological response (tumor regression grade 0/1) in the P-SOX group was significantly higher than that in the SOX group (42.86% vs 18.03%, P = 0.013). The incidence of ypN0 in the P-SOX group was higher than that in the SOX group (39.29% vs 19.67%, P = 0.05). The use of PD-1 inhibitors was an independent factor affecting tumor regression grade. Meanwhile, the use of PD-1 did not increase postoperative complications or the adverse effects of NAT. CONCLUSION: A PD-1 inhibitor combined with SOX could significantly improve the rate of tumour regression during NAT for patients with Borrmann large type III and IV GCs.

6.
Talanta ; 274: 125958, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574534

ABSTRACT

Hydrovoltaic is an emerging technology that aims to harvest energy from water flow and evaporation, in which the plasmonic hydrogen ions are generated by the interaction between water and hydrovoltaic device. However, the volume of the water sample for the interaction is usually ultra-small due to the compact size of hydrovoltaic device, making the quantification and characterization of the hydrogen ions in such water sample an elusive goal. To address this issue, a miniature fiber-optic pH probe is proposed using a unilaterally tapered-microfiber Bragg grating. The microfiber Bragg grating has an intrinsic Bragg reflection signal with a narrow linewidth. The fiber probe is functionalized by coating the sodium alginate, which can respond to the variation of pH mediated by the alteration of the hydrophilicity. The rigidity and robustness of microfiber Bragg grating facilitates the encapsulation of the sensor into a sampling capillary, allowing for the detection of trace aqueous sample less than 2 µL. The pH sensitivity of the tapered-µFBG-based sensor is 62.8 p.m./pH (R2 = 0.995) with a limit resolution of 0.096 pH. The sensor performed a practical application in the monitoring and characterization of the hydrovoltaic microdevice, which can generate microcurrent as soaked in the water. This work demonstrates a promising technology in the fields of materials, energy, biology and medicine, in which the detection of the microsamples is inevitable.

7.
Life (Basel) ; 14(3)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38541684

ABSTRACT

The radiosensitization potential of focused ultrasound (FUS)-induced mild hyperthermia was assessed in an allogenic subcutaneous C6 glioma tumor model in rats. Mild hyperthermia at 42 °C was induced in tumors using a single-element 350 kHz FUS transducer. Radiation was delivered with a small animal radiation research platform using a single-beam irradiation technique. The combined treatment involved 20 min of FUS hyperthermia immediately before radiation. Tumor growth changes were observed one week post-treatment. A radiation dose of 2 Gy alone showed limited tumor control (30% reduction). However, when combined with FUS hyperthermia, there was a significant reduction in tumor growth compared to other treatments (tumor volumes: control-1174 ± 554 mm3, FUS-HT-1483 ± 702 mm3, 2 Gy-609 ± 300 mm3, FUS-HT + 2 Gy-259 ± 186 mm3; ANOVA p < 0.00001). Immunohistological analysis suggested increased DNA damage as a short-term mechanism for tumor control in the combined treatment. In conclusion, FUS-induced mild hyperthermia can enhance the effectiveness of radiation in a glioma tumor model, potentially improving the outcome of standard radiation treatments for better tumor control.

8.
Angew Chem Int Ed Engl ; 63(17): e202402373, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38441483

ABSTRACT

Electrochemiluminescence (ECL) efficiency is determined by charge transfer between coreactants and emitters in coreactant systems, which are usually limited by their slow intermolecular charge transfer. In this study, a covalent organic framework (COF) with aldehyde residue was synthesized, and then coreactants were covalently integrated into the skeleton through the postsynthetic modification strategy, resulting in a crystalline coreactant-embedded COF nanoemitter (C-COF). Compared to the pristine COF with an equivalent external coreactant, C-COF exhibited an extraordinary 1008-fold enhancement of ECL intensity due to the rapid intrareticular charge transfer. Significantly, with the pH increase, C-COF shows protonation-induced ECL enhancement for the first ECL peaked at +1.1 V and an opposite trend for the second ECL at +1.4 V, which were attributed to the antedating oxidation of coreactant in framework and COF self-oxidation, respectively. The resulting bimodal oxidation ECL mechanism was rationalized by spectral characterization and density functional theory calculations. The postsynthetic coreactant-embedded nanoemitters present innovative and universal avenues for advancing ECL systems.

9.
Vaccine X ; 16: 100434, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38304877

ABSTRACT

Background: Mpox, one of the most serious threats to global health, is now being seen in small but rising numbers in Beijing, China. Our study aimed to investigate healthcare workers' (HCWs) knowledge of Mpox and to explore reasons associated with their hesitancy to vaccinate against Mpox in Beijing, China. Methods: A cross-sectional study was conducted among HCWs in Beijing from July 24 to August 2, 2023, through an online questionnaire. Participants answered questions about sociodemographic characteristics, Mpox information sources, Mpox knowledge, perception of vaccines, and attitudes toward Mpox vaccination. We used Chi-squared test to compare difference in Mpox vaccination hesitancy between different groups. Multivariable logistic regression models were applied to analyze correlates of vaccination hesitancy among HCWs. Results: A total of 2331 HCWs completed the questionnaire, with an effective response rate of 92.45 % (2155/2331). Most of the HCWs in this study worked at tertiary hospitals (89.65 %), with a mean age of 36.69 ± 9.08 years. Among the 2155 participants, 52.99 % had over ten years of working experience, and 16.66 % were from high-risk departments relevant to Mpox treatment. Approximately 84.41 % knew about Mpox before this study, 80.79 % exhibited a high level of knowledge about Mpox, whereas 42.37 % were hesitant to be vaccinated against Mpox. Moreover, the hesitancy rate of HCWs in high-risk departments (47.91 %) was higher than in lower-risk departments (41.26 %). Higher educational level (aOR = 1.75, 95 %CI: 1.17-2.62), longer working years (1.71, 1.32-2.22), working at high-risk departments (1.34, 1.05-1.71), and lower level of knowledge about Mpox (1.78, 1.13-2.85) appeared as the most significant determinants of Mpox vaccination hesitancy among HCWs who knew about Mpox. For the HCWs who did not know about Mpox, longer working years (1.96, 1.02-3.78) were significant factors associated with their hesitancy. The predominant reason for hesitancy toward Mpox vaccination among HCWs encompassed apprehensions about vaccine side effects. Conclusion: HCWs had good knowledge of Mpox, whereas their Mpox vaccination hesitancy was also relatively high in Beijing, China. Increasing HCWs' vaccination confidence and knowledge level about Mpox, especially for those working in high-risk departments, may be an essential way of reducing their hesitancy.

10.
Microbiome ; 12(1): 6, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191439

ABSTRACT

BACKGROUND: Our previous study revealed marked differences in tongue images between individuals with gastric cancer and those without gastric cancer. However, the biological mechanism of tongue images as a disease indicator remains unclear. Tongue coating, a major factor in tongue appearance, is the visible layer on the tongue dorsum that provides a vital environment for oral microorganisms. While oral microorganisms are associated with gastric and intestinal diseases, the comprehensive function profiles of oral microbiota remain incompletely understood. Metaproteomics has unique strength in revealing functional profiles of microbiota that aid in comprehending the mechanism behind specific tongue coating formation and its role as an indicator of gastric cancer. METHODS: We employed pressure cycling technology and data-independent acquisition (PCT-DIA) mass spectrometry to extract and identify tongue-coating proteins from 180 gastric cancer patients and 185 non-gastric cancer patients across 5 independent research centers in China. Additionally, we investigated the temporal stability of tongue-coating proteins based on a time-series cohort. Finally, we constructed a machine learning model using the stochastic gradient boosting algorithm to identify individuals at high risk of gastric cancer based on tongue-coating microbial proteins. RESULTS: We measured 1432 human-derived proteins and 13,780 microbial proteins from 345 tongue-coating samples. The abundance of tongue-coating proteins exhibited high temporal stability within an individual. Notably, we observed the downregulation of human keratins KRT2 and KRT9 on the tongue surface, as well as the downregulation of ABC transporter COG1136 in microbiota, in gastric cancer patients. This suggests a decline in the defense capacity of the lingual mucosa. Finally, we established a machine learning model that employs 50 microbial proteins of tongue coating to identify individuals at a high risk of gastric cancer, achieving an area under the curve (AUC) of 0.91 in the independent validation cohort. CONCLUSIONS: We characterized the alterations in tongue-coating proteins among gastric cancer patients and constructed a gastric cancer screening model based on microbial-derived tongue-coating proteins. Tongue-coating proteins are shown as a promising indicator for identifying high-risk groups for gastric cancer. Video Abstract.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Tongue , Algorithms , Bicycling , China
11.
J Glob Health ; 14: 04025, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38180951

ABSTRACT

Background: Stomach and esophageal cancer exhibit high morbidity and mortality rate in China, resulting in substantial disease burdens. It is imperative to identify the temporal trends of stomach and esophageal cancer from 1990 to 2019 and project future trends until 2030, which can provide valuable information for planning effective management and prevention strategies. Methods: We collected and analysed data from the Global Burden of Disease (GBD) between 1990 and 2019, including incidence, mortality, disability-adjusted life years (DALYs), age-standardised incidence rate (ASIR), mortality rate (ASMR) and DALYs rate. We also calculated and reported the proportion of mortality and DALYs attributable to risk factors by sex in China and different regions. The Bayesian age-period-cohort model was applied to project future trends until 2030. Results: The new cases, deaths and DALYs of stomach and esophageal cancer increased from 1990 to 2019. However, the ASIR, ASMR and age-standardised DALYs rates for stomach and esophageal cancer all decreased during the same period. These changes may be related to risks, such as smoking and diet. Furthermore, we utilised the projection model to estimate that the ASIR and ASMR of stomach and esophageal cancer among females will likely follow steady downward trends, while the ASMR of stomach cancer among males is expected to exhibit a significant decline. However, the ASIR of stomach and esophageal cancer and the ASMR of esophageal cancer among males are projected to display slight upward trends until 2030. Conclusions: The analysis of stomach and esophageal cancer trends in China from 1990 to 2030 reveals a general decline. However, it is crucial to acknowledge the persistent high burden of both cancers in the country. Adopting healthy lifestyle practices, including the reduction of tobacco and alcohol intake, avoidance of moldy foods and increased consumption of fresh fruits and vegetables can contribute to mitigating the risk of stomach and esophageal cancer. Significantly, the formulation and implementation of well-founded and efficacious public health policies are imperative for alleviating the disease burden in China.


Subject(s)
Esophageal Neoplasms , Stomach Neoplasms , Female , Male , Humans , Global Burden of Disease , Esophageal Neoplasms/epidemiology , Stomach Neoplasms/epidemiology , Bayes Theorem , China/epidemiology
12.
Curr Med Chem ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38243978

ABSTRACT

BACKGROUND: Hyperuricemia (HUA) is a disease characterized by excessive uric acid production and/or insufficient uric acid excretion caused by abnormal purine metabolism in the human body. Uric acid deposition caused by hyperuricemia can cause complications, such as kidney damage. The current therapeutic drugs for HUA are not very targeted and usually have specific toxic side effects. OBJECTIVES: This study aimed to synthesize a compound using rhein and praseodymium, which can effectively help hyperuricemia patients with kidney injury to excrete uric acid through the intestine and preliminarily explore its intestinal excretion mechanism. METHODS: The natural active ingredient rhein and rare earth metal praseodymium were used to synthesize Rh-Pr. The possible chemical structure of Rh-Pr was deduced by UV, IR, 1H-NMR, conductivity method, and thermogravity analysis. Adenine (100 mg/kg) and ethambutol hydrochloride (250 mg/kg) were administered by gavage for three weeks to establish the hyperuricemia rat model of renal injury. Serum uric acid (UA), creatinine (Cr), urea nitrogen (BUN), and uric acid concentration in urine and feces were detected by biochemical methods. The protein expression levels of GLUT9, ABCG2, and MRP4 in the jejunum, ileum, and colon of rats were detected by Western Blotting. RESULTS: According to the characterization, the chemical composition formula of the complex is Pr(C15H7O6)3·2H2O. In vivo, activity tests showed that Rh-Pr could enhance the intestinal uric acid excretion level of rats, upregulate the expression of ABCG2 protein in the jejunum and ileum, down-regulate the expression of GLUT9 protein in the ileum and colon, and also had a good recovery effect on serum uric acid, creatinine, and urea nitrogen levels. CONCLUSION: Rh-Pr is different from other drugs in that it promotes intestinal uric acid excretion and has a renal recovery effect. It reduces the patient's kidney burden and is significant for hyperuricemia patients with kidney injury.

13.
World J Surg Oncol ; 22(1): 21, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243254

ABSTRACT

BACKGROUND: After radical surgery, early detection of recurrence and metastasis is a crucial factor in enhancing the prognosis and survival of patients with gastric cancer (GC). Therefore, assessing the risk of recurrence in gastric cancer patients and determining the timing for postoperative recurrence is crucial. METHODS: The clinicopathological data of 521 patients with recurrent gastric cancer, who underwent radical gastrectomy at Zhejiang Cancer Hospital between January 2010 and January 2017, were retrospectively analyzed. These patients were randomly divided into two groups: a training group (n = 365) and a validation group (n = 156). In the training set, patients were further categorized into early recurrence (n = 263) and late recurrence (n = 102) groups based on a 2-year boundary. Comparative analyses of clinicopathological features and prognoses were conducted between these two groups. Subsequently, a nomogram for predicting early recurrence was developed and validated. RESULTS: In this study, the developed nomogram incorporated age, serous infiltration, lymph node metastasis, recurrence mode, and the tumour marker CA19-9. In the training cohort, the area under the curve (AUC value) was 0.739 (95% CI, 0.682-0.798), with a corresponding C-index of 0.739. This nomogram was subsequently validated in an independent validation cohort, yielding an AUC of 0.743 (95% CI, 0.652-0.833) and a C-index of 0.743. Furthermore, independent risk factors for prognosis were identified, including age, absence of postoperative chemotherapy, early recurrence, lymph node metastasis, abdominal metastasis, and vascular cancer embolus. CONCLUSION: Independent risk factors for gastric cancer recurrence following radical surgery were utilized to construct a nomogram for predicting early relapse. This nomogram effectively assesses the risk of recurrence, aids in treatment decision-making and follow-up planning in clinical settings, and demonstrated strong performance in the validation cohort.


Subject(s)
Nomograms , Stomach Neoplasms , Humans , Retrospective Studies , Stomach Neoplasms/diagnosis , Stomach Neoplasms/surgery , Lymphatic Metastasis , Gastrectomy/adverse effects
14.
Nanoscale ; 16(5): 2513-2521, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38205870

ABSTRACT

In recent years, van der Waals heterostructures (vdWHs) with controllable and peculiar properties have attracted extensive attention in the fields of electronics, optoelectronics, spintronics and electrochemistry. However, vdWHs with good thermoelectric performance are few due to the complex coupling of thermoelectric coefficients. Here, we employ density functional theory and Boltzmann's transport equation to explore the thermoelectric properties of the p-n vdWH of GaSe/SnS2, which has been experimentally observed to exhibit high performance as an optoelectronic device. We reveal that GaSe/SnS2 possesses strong anisotropy in terms of electronic transport resulting from the anisotropic carrier relaxation time. The longer carrier relaxation time in the y-direction for n-type induces a high power factor of 0.084 W m-1 K-2 at 300 K, while it is only 0.0087 W m-1 K-2) in the x-direction. The strong coupling of low-mid frequency phonon branches and the relatively weak Sn-S bond-induced anharmonicity hinder the phonon transport, which results in the lattice thermal conductivity of GaSe/SnS2 (14.61 and 15.43 W m-1 K-1 along the x- and y-directions at 300 K) being much smaller than the average value of GaSe and SnS2 (43.44 W m-1 K-1 at 300 K). The optimal thermoelectric figure of merit at 700 K for GaSe/SnS2 reaches 2.99, which is significantly higher than those of the constituents of GaSe (0.58) and SnS2 (1.04). The present work highlights the potential thermoelectric applications and the understanding of the thermoelectric transport mechanism for the recently synthesized p-n vdWH of GaSe/SnS2 with a high thermoelectric figure of merit and strong anisotropy.

15.
iScience ; 27(1): 108661, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38205245

ABSTRACT

Immune receptor repertoire is valuable for developing immunotherapeutic interventions, but remains poorly understood across glioma subtypes including IDH wild type, IDH mutation without 1p/19q codeletion (IDHmut-noncodel) and IDH mutation with 1p/19q codeletion (IDHmut-codel). We assembled over 320,000 TCR/BCR clonotypes from the largest glioma cohort of 913 RNA sequencing samples in the Chinese population, finding that immune repertoire diversity was more prominent in the IDH wild type (the most aggressive glioma). Fewer clonotypes were shared within each glioma subtype, indicating high heterogeneity of the immune repertoire. The TRA-CDR3 was longer in private than in public clonotypes in IDH wild type. CDR3 variable motifs had higher proportions of hydrophobic residues in private than in public clonotypes, suggesting private CDR3 sequences have greater potential for tumor antigen recognition. Finally, we developed GTABdb, a web-based database designed for hosting, exploring, visualizing, and analyzing glioma immune repertoire. Our study will facilitate developing glioma immunotherapy.

16.
Small ; : e2308421, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221693

ABSTRACT

High-entropy alloys nanoparticles (HEAs NPs) have gained considerable attention due to their extensive compositional tunability and intriguing catalytic properties. However, the synthesis of highly dispersed ultrasmall HEAs NPs remains a formidable challenge due to their inherent thermodynamic instability. In this study, highly dispersed ultrasmall (ca. 2 nm) PtCuGaFeCo HEAs NPs are synthesized using a one-pot solution-based method at 160 °C and atmospheric pressure. The PtCuGaFeCo NPs exhibit good catalytic activity for the oxygen reduction reaction (ORR). The half-wave potential relative to the reversible hydrogen electrode (RHE) reaches 0.88 V, and the mass activity and specific activity are approximately six times and four times higher than that of the commercial Pt/C catalyst. Based on X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analyses, the surface strain and optimized coordination environments of PtCuGaFeCo have led to high ORR activities in acidic media. Moreover, the ultrasmall size also plays an important role in enhancing catalytic performance. The work presents a facile and viable synthesis strategy for preparing the ultrasmall HEAs NPs, offering great potential in energy and electrocatalysis applications through entropy engineering.

17.
Angew Chem Int Ed Engl ; 63(3): e202315943, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38057544

ABSTRACT

The crystal growth and orientation of two-dimensional (2D) perovskite films significantly impact solar cell performance. Here, we incorporated robust quadrupole-quadrupole interactions to govern the crystal growth of 2D Ruddlesden-Popper (RP) perovskites. This was achieved through the development of two unique semiconductor spacers, namely PTMA and 5FPTMA, with different dipole moments. The ((5FPTMA)0.1 (PTMA)0.9 )2 MAn-1 Pbn I3n+1 (nominal n=5, 5F/PTMA-Pb) film shows a preferred vertical orientation, reduced grain boundaries, and released residual strain compared to (PTMA)2 MAn-1 Pbn I3n+1 (nominal n=5, PTMA-Pb), resulting in a decreased exciton binding energy and reduced electron-phonon coupling coefficients. In contrast to PTMA-Pb device with an efficiency of 15.66 %, the 5F/PTMA-Pb device achieved a champion efficiency of 18.56 %, making it among the best efficiency for 2D RP perovskite solar cells employing an MA-based semiconductor spacer. This work offers significant insights into comprehending the crystal growth process of 2D RP perovskite films through the utilization of quadrupole-quadrupole interactions between semiconductor spacers.

18.
Scand J Gastroenterol ; 59(1): 62-69, 2024.
Article in English | MEDLINE | ID: mdl-37649307

ABSTRACT

BACKGROUND AND AIMS: There is no golden standard for the diagnosis of autoimmune hepatitis which still dependent on liver biopsy currently. So, we developed a noninvasive prediction model to help optimize the diagnosis of autoimmune hepatitis. METHODS: From January 2017 to December 2019, 1739 patients who had undergone liver biopsy were seen in the second hospital of Nanjing, of which 128 were here for consultation. Clinical, laboratory, and histologic data were obtained retrospectively. Multivariable logistic regression analysis was employed to create a nomogram model that predicting the risk of autoimmune hepatitis. Internal and external validation was both performed to evaluate the model. RESULTS: A total of 1288 patients with liver biopsy were enrolled (1184 from the second hospital of Nanjing, the remaining 104 from other centers). After the univariate and multivariate logistic regression analysis, nine variables including ALT, IgG, ALP/AST, ALB, ANA, AMA, HBsAg, age, and gender were selected to establish the noninvasive prediction model. The nomogram model exhibits good prediction in diagnosing autoimmune hepatitis with AUROC of 0.967 (95% CI: 0.776-0.891) in internal validation and 0.835 (95% CI: 0.752-0.919) in external validation. CONCLUSIONS: ALT, IgG, ALP/AST, ALB, ANA, AMA, HBsAg, age, and gender are predictive factors for the diagnosis of autoimmune hepatitis in patients with unexplained liver diseases. The predictive nomogram model built by the nine predictors achieved good prediction for diagnosing autoimmune hepatitis.


Subject(s)
Hepatitis, Autoimmune , Humans , Hepatitis, Autoimmune/complications , Hepatitis, Autoimmune/diagnosis , Retrospective Studies , Hepatitis B Surface Antigens , Nomograms , Immunoglobulin G
19.
IEEE J Biomed Health Inform ; 28(2): 1101-1109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048232

ABSTRACT

Major adverse cardiovascular events (MACE) encompass pivotal cardiovascular outcomes such as myocardial infarction, unstable angina, and cardiovascular-related mortality. Patients undergoing peritoneal dialysis (PD) exhibit specific cardiovascular risk factors during the treatment, which can escalate the likelihood of cardiovascular events. Hence, the prediction and key factor analysis of MACE have assumed paramount significance for peritoneal dialysis patients. Current pathological methodologies for prognosis prediction are not only costly but also cumbersome in effectively processing electronic health records (EHRs) data with high dimensionality, heterogeneity, and time series. Therefore in this study, we propose the CVEformer, an attention-based neural network designed to predict MACE and analyze risk factors. CVEformer leverages the self-attention mechanism to capture temporal correlations among time series variables, allowing for weighted integration of variables and estimation of the probability of MACE. CVEformer first captures the correlations among heterogeneous variables through attention scores. Then, it analyzes the correlations within the time series data to identify key risk variables and predict the probability of MACE. When trained and evaluated on data from a large cohort of peritoneal dialysis patients across multiple centers, CVEformer outperforms existing models in terms of predictive performance.


Subject(s)
Deep Learning , Myocardial Infarction , Peritoneal Dialysis , Humans , Peritoneal Dialysis/adverse effects , Risk Factors , Prognosis
20.
J Neurosurg ; : 1-7, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064704

ABSTRACT

OBJECTIVE: There are few reports of outcomes following stereotactic radiosurgery (SRS) for the management of cerebral cavernous malformations (CCMs) of the basal ganglia or thalamus. Therefore, the authors aimed to clarify these outcomes. METHODS: Centers participating in the International Radiosurgery Research Foundation were queried for CCM cases managed with SRS from October 2001 to February 2021. The primary outcome of interest was hemorrhage-free survival (HFS) with a secondary outcome of symptomatic adverse radiation events (AREs). Assessment of the association of prognostic factors with HFS was conducted via Kaplan-Meier analysis and log-rank test. Chi-square tests were conducted to assess potential factors associated with the incidence of AREs. RESULTS: Seventy-three patients were identified. The median patient age was 43.5 years (range 4.4-79.5 years). Fifty-nine (80.8%) patients had hemorrhage prior to SRS. The median treatment volume was 0.9 cm3 (range 0.07-10.1 cm3) with a median margin prescription dose (MPD) of 12 Gy (range 10-20 Gy). One-, 3-, 5-, and 10-year HFS were 93.0%, 89.9%, 89.9%, and 83.0%, respectively, with one hemorrhage-related death approximately 1 year after SRS and nearly 60% and 30% of patients having improvement or stability of symptoms, respectively. There was no correlation between lesion size or MPD and HFS. Seven (9.6%) patients experienced AREs (MPDs > 12 Gy in all cases). Lesion size > 1.0 cm3 was correlated with the incidence of an ARE (p = 0.019). Forty-two (93.3%) of 45 patients treated with an MPD ≤ 12 Gy experienced neither hemorrhage nor AREs following SRS versus 17 (60.7%) of 28 patients treated with an MPD > 12 Gy (p = 0.0006). CONCLUSIONS: SRS is a reasonable treatment strategy and confers clinical stability or improvement and hemorrhage avoidance in patients harboring CCMs of the basal ganglia or thalamus. An MPD of approximately 12 Gy is recommended for the management of CCM.

SELECTION OF CITATIONS
SEARCH DETAIL
...