Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 12(1): 3573, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246575

ABSTRACT

Urethral stricture (US) remains a challenging disease without effective treatment options due to the high recurrence rate. This study aims to evaluate the preventive effect of uncultured adipose derived stromal vascular fraction (SVF) on urethral fibrosis in a rat model of US. Results demonstrated that US rats displayed hyperechogenic urethral wall with a narrowed lumen compared with sham rats, while SVF rats exhibited less extensive urethral changes. By histology, US rats showed obvious submucosal fibrosis in the urethral specimens, while SVF rats exhibited mild submucosal fibrosis with less extensive tissue changes. Furthermore, US rats showed increased gene and protein expression of collagen I (2.0 ± 0.2, 2.2 ± 0.2, all were normalized against GAPDH, including the following), collagen III (2.5 ± 0.3, 1.2 ± 0.1), and TGFß1R (2.8 ± 0.3, 1.9 ± 0.2), while SVF cells administration contributed to decreased gene and protein expression of collagen I (1.6 ± 0.2, 1.6 ± 0.2), collagen III (1.8 ± 0.4, 0.9 ± 0.1), and TGFß1R (1.8 ± 0.3, 1.3 ± 0.2), in parallel with the improvement of vascularization and increased expression of VEGF (1.7 ± 0.1) and bFGF (3.1 ± 0.3). Additionally, SVF served anti-inflammatory effect through regulation of inflammatory cytokines and cells, accompanied with conversion of the macrophage phenotype. Our findings suggested that uncultured SVF presented an inhibitory effect on stricture formation at an early stage of urethral fibrosis.


Subject(s)
Oral Submucous Fibrosis , Urethral Stricture , Adipose Tissue/metabolism , Animals , Collagen/metabolism , Fibrosis , Oral Submucous Fibrosis/metabolism , Rats , Stromal Cells/metabolism , Stromal Vascular Fraction , Urethral Stricture/metabolism , Urethral Stricture/prevention & control
2.
Stem Cell Res Ther ; 13(1): 68, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35139904

ABSTRACT

BACKGROUND: Underactive bladder (UAB) is a common clinical problem but related research is rarely explored. As there are currently no effective therapies, the administration of adipose stromal vascular fraction (ad-SVF) provides a new potential method to treat underactive bladder. METHODS: Male Sprague-Dawley rats were induced by partial bladder outlet obstruction (PBOO) for four weeks and randomly divided into three groups: rats treated with PBS (Sham group); rats administrated with ad-SVF (ad-SVF group) and rats performed with ad-SVF spheroids (ad-SVFsp group). After four weeks, urodynamic studies were performed to evaluate bladder functions and all rats were sacrificed for further studies. RESULTS: We observed that the bladder functions and symptoms of UAB were significantly improved in the ad-SVFsp group than that in the Sham group and ad-SVF group. Meanwhile, our data showed that ad-SVF spheroids could remarkably promote angiogenesis, suppress cell apoptosis and stimulate cell proliferation in bladder tissue than that in the other two groups. Moreover, ad-SVF spheroids increased the expression levels of bFGF, HGF and VEGF-A than ad-SVF. IVIS Spectrum small-animal in vivo imaging system revealed that ad-SVF spheroids could increase the retention rate of transplanted cells in bladder tissue. CONCLUSIONS: Ad-SVF spheroids improved functions and symptoms of bladder induced by PBOO, which contributes to promote angiogenesis, suppress cell apoptosis and stimulate cell proliferation. Ad-SVF spheroids provide a potential treatment for the future patients with UAB.


Subject(s)
Urinary Bladder Neck Obstruction , Urinary Bladder, Underactive , Animals , Male , Rats , Adipose Tissue/metabolism , Rats, Sprague-Dawley , Stromal Cells/metabolism , Stromal Vascular Fraction , Urinary Bladder/metabolism , Urinary Bladder Neck Obstruction/metabolism , Urinary Bladder Neck Obstruction/therapy , Urinary Bladder, Underactive/metabolism
3.
Tissue Eng Part A ; 26(1-2): 78-92, 2020 01.
Article in English | MEDLINE | ID: mdl-31238789

ABSTRACT

Tissue engineering technology provides an alternative for bladder reconstruction, which remains confronted with challenges, such as insufficient vascularization in regenerated bladder tissue. Short-term hypoxic preconditioning has been reported to be an effective method to enhance the angiogenic effect of stem cells. This study evaluated the effect and mechanism of hypoxia-preconditioned adipose-derived endothelial progenitor cells (hp-ADEPCs) on the vascularization and smooth muscle regeneration of tissue-engineered bladders. Rats were randomly divided into the following four groups: hp-ADEPC, ADEPC, bladder acellular matrix (BAM), and cystotomy groups. A partial cystectomy was performed to remove 50% of the bladder, which was augmented with hp-ADEPC-BAM, ADEPC-BAM, or BAM. Histological and functional assessments of the engineered neobladder were performed at 1 and 3 months after surgery, while the mechanism of hp-ADEPCs on vascularization was also investigated. Immunohistochemical analysis revealed that hp-ADEPC-BAM significantly promoted urothelium, blood vessel, smooth muscle, and nerve cell regeneration. Animals in the hp-ADEPC-BAM group exhibited higher bladder compliance and a relatively normal micturition pattern compared with the ADEPC-BAM and BAM groups. In addition, compared with ADEPCs, hp-ADEPCs promoted ERK phosphorylation activation and hypoxia-inducible factor-1α expression, thereby secreting more vascular endothelial growth factor and basic fibroblast growth factor and significantly enhancing the migration and angiogenesis abilities of rat endothelial cells. This is the first study to demonstrate that a combination of ADEPCs and BAM with short-term hypoxic preconditioning enhances angiogenesis and promotes the functional recovery of tissue-engineered bladders. Impact Statement Insufficient vascularization in regenerated bladder tissue remains a challenge for bladder tissue engineering. We successfully isolated adipose-derived endothelial progenitor cells (ADEPCs) with high proliferative potential and angiogenic properties. Hypoxic preconditioning was confirmed to effectively enhance stem cell activity. In this study, a porcine bladder acellular matrix (BAM) was established, and hypoxia-preconditioned autologous ADEPCs were simultaneously introduced for bladder reconstruction in a rat model, followed by an assessment of their feasibility and potential for bladder vascularization. For the first time, we demonstrated that hypoxic preconditioning of ADEPCs improves angiogenesis and the functional recovery of tissue-engineered bladders.


Subject(s)
Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/metabolism , Tissue Engineering/methods , Urinary Bladder/cytology , Urinary Bladder/metabolism , Animals , Cell Movement/physiology , Cell Proliferation/physiology , Flow Cytometry , Immunohistochemistry , Muscle, Smooth/cytology , Muscle, Smooth/metabolism
4.
J Tissue Eng ; 10: 2041731419891256, 2019.
Article in English | MEDLINE | ID: mdl-31827758

ABSTRACT

The formation of an effective vascular network can promote peripheral angiogenesis, ensuring an effective supply of blood, oxygen, and nutrients to an engineered bladder, which is important for bladder tissue engineering. Stromal vascular fraction cells (SVFs) promote vascularization and improve the function of injured tissues. In this study, adipose tissue-derived SVFs were introduced as an angiogenic cell source and seeded into the bladder acellular matrix (BAM) to generate a SVF-BAM complex for bladder reconstruction. The morphological regeneration and functional restoration of the engineered bladder were evaluated. In addition, we also explored the role of the Wnt5a/sFlt-1 noncanonical Wnt signaling pathway in regulating the angiogenesis of SVFs, and in maintaining the rational capability of SVFs to differentiate into vasculature in regenerated tissues. Histological assessment indicated that the SVF-BAM complex was more effective in promoting smooth muscle, vascular, and nerve regeneration than BAM alone and subsequently led to the restoration of bladder volume and bladder compliance. Moreover, exogenous Wnt5a was able to enhance angiogenesis by increasing the activity of MMP2, MMP9, and VEGFR2. Simultaneously, the expression of sFlt-1 was also increased, which enhanced the stability of the SVFs angiogenic capability. SVFs may be a potential cell source for tissue-engineered bladders. The Wnt5a/sFlt-1 pathway is involved in the regulation of autologous vascular formation by SVFs. The rational regulation of this pathway can promote neo-microvascularization in tissue-engineered bladders.

5.
J Cell Physiol ; 234(4): 4910-4923, 2019 04.
Article in English | MEDLINE | ID: mdl-30317571

ABSTRACT

MicroRNAs (miRNAs), a group of small noncoding RNAs, are widely involved in the regulation of gene expression via binding to complementary sequences at 3'-untranslated regions (3'-UTRs) of target messenger RNAs. Recently, downregulation of miR-133b has been detected in various human malignancies. Here, the potential biological role of miR-133b in bladder cancer (BC) was investigated. In this study, we found the expression of miR-133b was markedly downregulated in BC tissues and cell lines (5637 and T24), and was correlated with poor overall survival. Notably, transgelin 2 (TAGLN2) was found to be widely upregulated in BC, and overexpression of TAGLN2 also significantly increased risks of advanced TMN stage. We further identified that upregulation of miR-133b inhibited glucose uptake, invasion, angiogenesis, colony formation and enhances gemcitabine chemosensitivity in BC cell lines by targeting TAGLN2. Additionally, we showed that miR-133b promoted the proliferation of BC cells, at least partially through a TAGLN2-mediated cell cycle pathway. Our results suggest a novel miR-133b/TAGLN2/cell cycle pathway axis controlling BC progression; a molecular mechanism which may offer a potential therapeutic target.


Subject(s)
Cell Cycle Checkpoints/genetics , MicroRNAs/genetics , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Neovascularization, Pathologic/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/prevention & control , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Humans , Mice , Mice, Nude , MicroRNAs/biosynthesis , Neoplasm Invasiveness/genetics , Neoplasm Transplantation , Transplantation, Heterologous
6.
Stem Cells Transl Med ; 8(4): 383-391, 2019 04.
Article in English | MEDLINE | ID: mdl-30569668

ABSTRACT

Torsion-detorsion (T/D)-induced testicular injury may lead to male subfertility and even infertility. Stem cell therapy provides an alternative to attenuate testicular injury and promote spermatogenesis. Adipose-derived stromal vascular fraction (SVF) can be acquired conveniently without in vitro expansion, which may avoid the potential risks of microbial contamination, xenogenic nutritional sources, etc., during cell culture. In this study, we investigate the protective effects of autologous uncultured SVF on testicular injury and spermatogenesis in a rat model of T/D. Animals were randomly divided into sham, T/D+ phosphate-buffered saline, and T/D + SVF groups (18 rats in each group). SVF was isolated, labeled with lipophilic fluorochrome chloromethylbenzamido dialkylcarbocyanine, and transplanted into T/D testis by local injection. At 3, 7, 14, and 28 days F surgery, testicular tissue and serum samples were harvested for histopathological, immunohistochemical, Western blot, and enzyme-linked immunosorbent assays. Histopathological findings demonstrated severe injury in the testis with decreased Johnsen's score led by T/D, while uncultured SVF reduced testicular injury and elevated the decreased score. Injected SVF cells were mainly integrated into interstitial region and seminiferous tubules, enhanced the secretion of basic fibroblast growth factor and stem cell factor in the testis, contributed to the declining level of malondialdehyde and restoration of hormonal homeostasis, and then reduced the injury of Leydig cells and germ cells, as well as promoting spermatogenesis. Our findings demonstrated that autologous uncultured SVF could protect the testis from testicular ischemia-reperfusion injury and promote spermatogenesis, which provide significant clinical implications for the prevention of infertility induced by testicular T/D. Stem Cells Translational Medicine 2019;8:383-391.


Subject(s)
Adipose Tissue/cytology , Spermatic Cord Torsion/complications , Stromal Cells/cytology , Testis/pathology , Adipose Tissue/metabolism , Animals , Fibroblast Growth Factors/metabolism , Germ Cells/metabolism , Germ Cells/pathology , Leydig Cells/metabolism , Leydig Cells/pathology , Male , Malondialdehyde/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Reperfusion Injury/therapy , Seminiferous Tubules/metabolism , Seminiferous Tubules/pathology , Spermatic Cord Torsion/metabolism , Spermatogenesis/physiology , Stromal Cells/metabolism , Testis/metabolism
7.
Oncotarget ; 8(45): 79323-79336, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-29108311

ABSTRACT

OBJECTIVE: We conducted this meta-analysis to examine the effect of remote ischemic conditioning (RIC) on contrast-induced acute kidney injury (CI-AKI) in patients undergoing intravascular contrast administrationon. METHODS: Pubmed, Embase, and Cochrane Library were comprehensively searched to identify all eligible studies by 15th March, 2017. Risk ratio (RR) and weighted mean difference with the corresponding 95% confidence intervals (CI) were used to examine the treatment effect. The heterogeneity and statistical significance were assessed with Q-test and Z-test, respectively. RESULTS: A total of 16 RCTs including 2175 patients were eventually analyzed. Compared with the control group, RIC could significantly decrease the incidence of CI-AKI (RR=0.58; 95% CI: 0.46, 0.74; P < 0.001), which was further confirmed by the trial sequential analysis. Subgroup analyses showed that remote ischemic preconditioning (RIPrC) and remote ischemic postconditioning (RIPoC) were both obviously effective, and perioperative hydration might enhance the efficiency of RIC. RIC also significantly reduced the major adverse cardiovascular events within six months. CONCLUSION: RIC, whether RIPrC or RIPoC, could effectively exert renoprotective role in intravascular contrast administration and reduce the incidence of relevant adverse events.

8.
Cell Physiol Biochem ; 44(3): 1213-1223, 2017.
Article in English | MEDLINE | ID: mdl-29179219

ABSTRACT

BACKGROUND/AIMS: Acute rejection (AR) is a major complication post renal transplantation, with no widely-accepted non-invasive biomarker. This study aimed to explore the expression profiles of long non-coding RNAs (lncRNAs) in the peripheral blood (PB) of renal transplant recipients and their potential diagnostic values. METHODS: The genome-wide lncRNA expression profiles were analyzed in 150 PB samples from pediatric and adult renal transplant (PRTx and ARTx) cohorts. The diagnostic performance of differentially expressed lncRNA was determined using receiver operator characteristic curve, with area under the curve (AUC) and 95% confidential interval (CI). Finally, a risk score was constructed with logistical regression model. RESULTS: A total of 162 lncRNAs were found differentially expressed in PRTx cohort, while 163 in ARTx cohort. Among these identified lncRNAs, 23 deregulated accordingly in both cohorts, and could distinguish AR recipients from those without AR. Finally, a risk score with two most significant lncRNAs (AF264622 and AB209021) was generated and exhibited excellent diagnostic performance in both PRTx (AUC:0.829, 95% CI:0.735-0.922) and ARTx cohorts (AUC: 0.889, 95% CI: 0.817-0.960). CONCLUSION: A molecular signature of two lncRNAs in PB could serve as a novel non-invasive biomarker for the diagnosis of AR in both pediatric and adult renal transplant recipients.


Subject(s)
Graft Rejection/pathology , Kidney Transplantation , RNA, Long Noncoding/blood , Acute Disease , Area Under Curve , Biomarkers/blood , Cohort Studies , Graft Rejection/genetics , Graft Rejection/metabolism , Humans , ROC Curve , Transcriptome , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...