Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Anal Chim Acta ; 1308: 342660, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740460

ABSTRACT

BACKGROUND: The research on cysteine (Cys) determination is deemed as a hot topic, since it has been reported to be connected with various physiological processes and disease prediction. However, existing Cys-responding probes may expose some defects such as long reaction time, disappointing photostability, and suboptimal sensitivity. Under such a circumstance, our team has proposed an efficient fluorescent probe with novel sensing mechanism to perfectly cope with the above-mentioned drawbacks. RESULTS: A novel cascade reaction-based probe 9-(2,2-dicyanovinyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-yl acrylate (DPQA) has been synthesized for the first time. Undergoing addition-cleavage and cyclization-rearrangement processes, DPQA reacts with Cys to generate an iminocoumarin product with relucent green fluorescence, namely 11-imino-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinoline-10-carbonitrile (IMC-J), and the relative fluorescence quantum yield (Φf) soars from 0.007 to 0.793. Utilizing such a mechanism, DPQA shows a superb turn-on signal (172-fold), low detection limit (4.1 nM), and wide detection range (5-6000 nM) toward Cys detection. Encouraged by the admirable sensing performance of DPQA, bioimaging of endogenous Cys has been attempted in HeLa cells with satisfactory results. Moreover, cell model of H2O2-induced oxidative stress has been established and the Cys fluctuation during this process has been inspected, elucidating how living cells confront with the eruption of reactive oxygen species (ROS) storm. SIGNIFICANCE: The probe DPQA with such an intriguing cascade responding process for Cys detection has been endowed with many merits, such as fast reaction and superior sensitivity, conducive to improving responsiveness and rendering it more suitable for further applications. Thereby, we expect that the DPQA would be an efficient tool for detecting Cys fluctuation in living cells of different physiological processes.


Subject(s)
Cysteine , Fluorescent Dyes , Cysteine/analysis , Cysteine/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , HeLa Cells , Spectrometry, Fluorescence , Molecular Structure , Limit of Detection
2.
J Agric Food Chem ; 72(17): 10097-10105, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38630689

ABSTRACT

With the booming development of food manufacturing, developing ideal analytical tools to precisely quantify food additives is highly sought after in the food science field. Herein, a new series of quinoline-derived multifunctional fluorescent probes has been synthesized. Bearing double reactive sites, these compounds display fluorescence response toward both bisulfite (HSO3-) and hypochlorous acid (HClO). Among these compact structures, compound ethyl-2-cyano-3-(6-(methylthio)quinolin-2-yl)acrylate (QTE) was screened out. Probe QTE not only shows ratiometric variation toward HSO3- with little cross talk but also performs turn-off signal toward HClO. In addition, probe QTE has been utilized for bioimaging of HClO in living cells. Furthermore, the HSO3- content in dried food samples has been appraised by QTE with satisfactory results. Meanwhile, relying on the apparent chromaticity change, a flexible dark-box device has been elaborated for chromatic analysis, promoting visualization of HSO3- in the field.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Quinolines , Sulfites , Fluorescent Dyes/chemistry , Quinolines/chemistry , Hypochlorous Acid/analysis , Humans , Sulfites/analysis , Sulfites/chemistry , Food Analysis/methods
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124288, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38636427

ABSTRACT

Realizing the accurate recognition and quantification of heavy metal ions is pivotal but challenging in the environmental, biological, and physiological science fields. In this work, orange fluorescence emitting quantum dots (OQDs) have been facilely synthesized by one-step method. The participation of silver ion (Ag+) can evoke the unique aggregation-induced emission (AIE) of OQDs, resulting in prominent fluorescence enhancement, which is scarcely reported previously. Moreover, the Ag+-triggered turn-on fluorescence can be continuously shut down by mercury ion (Hg2+). This intriguing sequential fluorescence variation exhibits great sensing potency for discrimination and quantification of Ag+ and Hg2+. Meanwhile, our OQDs also exhibit good selectivity, sensitivity, and rapid response toward Ag+ and Hg2+ detection. Due to their high performance, OQDs have been applied to the determination of Ag+ and Hg2+ levels in daily necessities and water samples with satisfactory results. Moreover, a portable smartphone-assisted sensing platform based on chromatic change has been constructed, facilitating the real-time and naked-eye visualization in the resource-confined scene. We anticipate that the discovery of these OQDs would be advantageous for exploring novel QDs materials for fluorescence detection.

4.
Anal Chem ; 95(43): 15965-15974, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37851944

ABSTRACT

Owing to the predominance of dopamine (DA) in controlling mental health, planning an innovative method for DA detection with simplicity and high efficacy is conducive to the assessment of neurological disorders. Herein, an efficient fluorogenic tactic has been elaborated for ultrasensitive detection of DA with remarkably enhanced turn-on response. Utilizing a twisted intramolecular charge-transfer (TICT)-suppressing strategy, a highly emissive azocine derivative 11-hydroxy-2,3,6,7,11,12,13,14-octahydro-1H,5H,10H-11,14a-methanoazocino[5',4':4,5]furo[2,3-f]pyrido[3,2,1-ij]quinolin-10-one (J-Aza) is generated via a one-step reaction between DA and 8-hydroxyjulolidine. It is marvelous that J-Aza not only possesses ideal fluorescence quantum yield (ΦF) as high as 0.956 but also exhibits bathochromic shifted fluorescence (green emissive) and stronger anti-photobleaching capacity superior to traditional azocine-derived 1,2,3,4-tetrahydro-5H-4,11a-methanobenzofuro[2,3-d]azocin-5-one (Aza) with moderate ΦF, blue fluorescence, and poor photostability. By confining the TICT process, the detection limit to DA can be reduced to 80 pM, which is competitive in contrast to previously reported fluorescence methods. Encouraged by the instant response (within 90 s), wide linear range (0.1-500 nM), great selectivity, and excellent sensitivity, this fluorogenic method has been used for the real-time measurement of DA contents in practical urine samples with satisfactory results. Furthermore, the cerebral DA level in the reserpine-induced depression rat model has also been evaluated by our designed method, demonstrating its potent analytical applicability in the biosensing field.


Subject(s)
Biosensing Techniques , Dopamine , Animals , Rats , Biosensing Techniques/methods , Limit of Detection , Fluorescent Dyes , Azocines , Brain
5.
Anal Bioanal Chem ; 415(19): 4639-4647, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37268746

ABSTRACT

Bisulfite (HSO3-) and sulfite (SO32-) are commonly employed in food preservatives and are also significant environmental pollutants. Thus, developing an effective method for detecting HSO3-/SO32- is crucial for food safety and environment monitoring. In this work, based on carbon dots (CDs) and zeolitic imidazolate framework-90 (ZIF-90), a composite probe (named CDs@ZIF-90) is constructed. The fluorescence signal and the second-order scattering signal of CDs@ZIF-90 are employed to ratiometricly detect HSO3-/SO32-. This proposed strategy exhibits a broad linear range for HSO3-/SO32- determination (10 µM to 8.5 mM) with a limit of detection of 2.74 µM. This strategy is successfully applied for evaluating HSO3-/SO32- in sugar with satisfactory recoveries. Therefore, this work has uniquely combined the fluorescence and second-order scattering signals to establish a novel sensing system with a wide linear range, which is applicable for ratiometric sensing of HSO3-/SO32- in actual samples.


Subject(s)
Metal-Organic Frameworks , Quantum Dots , Sugars , Limit of Detection , Carbohydrates , Sulfites , Carbon , Fluorescent Dyes
6.
Anal Chim Acta ; 1254: 341122, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37005029

ABSTRACT

Realizing the rapid and sensitive tracing of multiple analysis indicators using single molecular probe through structural designing is urgently desired for exploring novel multi-response chemosensors. Herein, a series of acrylonitrile-bridging organic small molecules have been rationally designed. Among these donor-π-acceptor (D-π-A) compounds with efficient aggregation-induced emission (AIE) characteristics, a unique derivative, 2-(1H-benzo[d]imidazole-2-yl)-3-(4-(methylthio)phenyl) acrylonitrile, named MZS, has been screened out for multifunctional utilizing. First, probe MZS can respond to hypochlorous acid (HClO) through specific oxidation reaction, showing a marked fluorescence turn-on signal (I495). This special sensing reaction is ultra-fast with a rather low detection limit (LOD = 13.6 nM). Next, versatile MZS is also sensitive to the extreme pH fluctuation, displaying an intriguing ratiometric signal variation (I540/I450), facilitating the real-time and naked-eye visualizing, which is even stable and reversible. Furthermore, probe MZS has been used for the monitoring of HClO in real water and commercially available disinfectant spray samples with satisfactory results. We envision that probe MZS would be a flexible and powerful tool for monitoring of environmental toxicity and industrial operations under realistic scenarios.

7.
Food Chem ; 407: 135120, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36495742

ABSTRACT

Thiophenols (ArSHs) are widely used as popular flavoring ingredients for making daily dishes. Dissecting the ArSHs contents in common foodstuffs is meaningful in the field of food safety science. Herein, a novel small-molecule sensor 2-(1H-benzo[d]imidazol-2-yl)-3-(2-(2,4-dinitrophenoxy)-4-morpholinophenyl)acrylonitrile (NOSA) has been tailored. The NOSA is able to respond to ArSHs, spontaneously yielding highly green-emissive fluorescent iminocoumarin (I500). This cascade reaction-based strategy is sensitive (limit-of-detection = 2.8 nM), rapid (within 5 min), and selective toward ArSH flavors. Probe NOSA has been applied to the determination of ArSHs in real-life meat products and condiments. Moreover, a far-red fluorescent compound, 2-(7-(diethylamino)-4-(4-(methylthio)styryl)-2H-chromen-2-ylidene)malononitrile (CMMT), has been first combined with NOSA to construct a composite probe NOSA@CMMT for the ratiometric detection of ArSHs (I500/I630). System NOSA@CMMT exhibits a conspicuous fluorescence change from deep-red to light-green. Benefitted from the gorgeous chromatic fluctuation, a smartphone-integrated analysis platform is established for the real-time evaluation of ArSHs level.


Subject(s)
Fluorescent Dyes , Meat Products , Meat Products/analysis , Phenols/analysis , Spectrometry, Fluorescence , Condiments/analysis
8.
Food Chem ; 405(Pt B): 134961, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36435107

ABSTRACT

Bisulfite (HSO3-) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of HSO3- is harmful to humans. Here, for the first time, aldehyde-functionalized dual-emissive carbon dots (D-CDs) are synthesized in one-step for direct ratiometric sensing of HSO3-. Due to the nucleophilic addition reaction between HSO3- and aldehyde of D-CDs, the fluorescence transforms from green to deep-blue. The linear range of the probe is 0.1-30 µmol/L with a detection limit of 42 nmol/L. Moreover, D-CDs show good selectivity and a fast reaction time (<5 min) toward HSO3-. The probe has been applied to trace HSO3- detection in food samples. The recoveries range from 96.5 % to 107.0 % with relative standard deviations below 6.5 %. In addition, a smartphone sensing platform has been designed, which provides a wider application prospect for the real-time monitoring of HSO3- in food.


Subject(s)
Aldehydes , Carbon , Humans , Fluorescence , Sulfites
9.
Food Chem ; 397: 133754, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35882164

ABSTRACT

Herein, a novel hemicyanine derivative (E)-3-(1,1-dimethyl-2-(4-(methylthio)styryl)-1H-benzo[e]indol-3-ium-3-yl)propane-1-sulfonate (BIS) has been reasonably designed. Compound BIS is long-wavelength emissive and water-soluble with a large Stokes shift. Intriguingly, probe BIS provides a dual-mode fluorescence response pattern for the sensing of bisulfite (HSO3-) and hypochlorous acid (HClO) with great limit of detections (3.6 and 57.4 nM). First, the 1,4-Michael addition of HSO3- on the conjugated double bond triggers a ratiometric response (I465/I575). Second, the rapid oxidation of HClO on the thioether moiety provides a turn-on response (I575). Evaluation of HSO3- and HClO levels in dried fruit, beverage, and water samples has been carried out with satisfactory results. Moreover, motivated by an impressive chromatic variation (red to blue), smartphone-assisted signal readout system and thin-film sensing platform are facilely constructed for real-time and on-site measurement of HSO3- levels. Furthermore, probe BIS is used for the in vivo imaging of HSO3- in edible fish models.


Subject(s)
Fluorescent Dyes , Fruit , Animals , Beverages , Fluorescent Dyes/chemistry , Hypochlorous Acid , Water
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 277: 121254, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35452901

ABSTRACT

A new type of dye with advantages of high selectivity and sensitivity is formed by using the strategy of hybridization between the luminescent unit and recognition unit. Based on this strategy, we exploit a novel dye bonding the benzopyrylium salt as a luminescent unit and phenylboronate group as a response site, which is served as a fluorescent probe 1 for specific recognition of hydrogen peroxide in biological application. Probe 1 employs a unique recognition switch, phenylboronate unit, to"turn-on"a highly specific and rapid fluorescence response toward hydrogen peroxide combined with the 1,6-rearrangement elimination reaction strategy. Meanwhile, probe 1 has the ability to glucose assay by taking advantage of glucose oxidase/glucose enzymatic reaction. What's more, the probe 1 is capable of tracking endogenous hydrogen peroxide in living cells and intracellular imaging. Therefore, the newly developed bioprobe 1 is expected to be used to monitor hydrogen peroxide and glucose levels in complex organisms.


Subject(s)
Biosensing Techniques , Fluorescent Dyes , Glucose , Glucose Oxidase , Hydrogen Peroxide
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120230, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34358784

ABSTRACT

Luminescent metal-organic frameworks (LMOFs) and their functional materials with unique characteristics can provide the basis for the construction of new analytical techniques, which can meet the continuous demand for various fields. In this work, guanosine monophosphate (GMP), terbium ion (Tb3+) and zeolitic imidazolate framework-8 (ZIF-8) are self-assembled to form a ZIF-8@GMP-Tb nanocomplex, which can be utilized as a ratiometric fluorescent probe to monitor alkaline phosphatase (ALP) activity. Specifically, with adding ALP, the fluorescence intensity at 547 nm (one of the characteristic emission peaks of Tb3+) obviously decreased. Meanwhile, the conjugated structure of GMP increased the fluorescence of ZIF-8 (located at 330 nm). The possible mechanism was proposed through the characterization of the materials. Based on the variation of the emission peaks at 330 and 547 nm, the ratiometric fluorescent sensor of ALP has a linear range of 0.25-20 U/L. Moreover, applying this sensing system to the detection of ALP in the human serum sample and ALP inhibitor investigation possesses satisfactory results. This work provides a new perspective for the utilization of ZIF-8 and lanthanide ions in manufacturing simple and sensitive sensors.


Subject(s)
Guanosine Monophosphate , Zeolites , Alkaline Phosphatase , Fluorescent Dyes , Humans , Terbium
12.
Autophagy ; 18(3): 540-558, 2022 03.
Article in English | MEDLINE | ID: mdl-34074205

ABSTRACT

Promoting the macroautophagy/autophagy-mediated degradation of specific proteins and organelles can potentially be utilized to induce apoptosis in cancer cells or sensitize tumor cells to therapy. To examine this concept, we enriched for autophagosomes from histone deacetylase inhibitor (HDACi)-sensitive U937 lymphoma cells and isogenic HDACi-resistant cells. Mass spectrometry on autophagosome-enriched fractions revealed that HDACi-resistant cells undergo elevated pexophagy, or autophagy of the peroxisome, an organelle that supports tumor growth. To disturb peroxisome homeostasis, we enhanced pexophagy in HDACi-resistant cells via genetic silencing of peroxisome exportomer complex components (PEX1, PEX6, or PEX26). This consequently sensitized resistant cells to HDACi-mediated apoptosis, which was rescued by inhibiting ATM/ataxia-telangiectasia mutated (ATM serine/threonine kinase), a mediator of pexophagy. We subsequently engineered melanoma cells to stably repress PEX26 using CRISPR interference (CRISPRi). Melanoma cells with repressed PEX26 expression showed evidence of both increased pexophagy and peroxisomal matrix protein import defects versus single guide scrambled (sgSCR) controls. In vivo studies showed that sgPEX26 melanoma xenografts recurred less compared to sgSCR xenografts, following the development of resistance to mitogen-activated protein kinase (MAPK)-targeted therapy. Finally, prognostic analysis of publicly available datasets showed that low expression levels of PEX26, PEX6 and MTOR, were significantly associated with prolonged patient survival in lymphoma, lung cancer and melanoma cohorts. Our work highlighted that drugs designed to disrupt peroxisome homeostasis may serve as unconventional therapies to combat therapy resistance in cancer.Abbreviations: ABCD3/PMP70: ATP binding cassette subfamily D member 3; ACOX1: acyl-CoA oxidase 1; AP: autophagosome; COX: cytochrome c oxidase; CQ: chloroquine; CRISPRi: clustered regularly interspaced short palindromic repeats interference; DLBCL: diffuse large B-cell lymphoma; GO: gene ontology; dCas9: Cas9 endonuclease dead, or dead Cas9; HDACi: histone deacetylase inhibitors; IHC: Immunohistochemistry; LAMP2: lysosomal associated membrane protein 2; LCFAs: long-chain fatty acids; LFQ-MS: label-free quantitation mass spectrometry; LPC: lysophoshatidylcholine; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PBD: peroxisome biogenesis disorders; PTS1: peroxisomal targeting signal 1; ROS: reactive oxygen species; sgRNA: single guide RNA; VLCFAs: very-long chain fatty acids; Vor: vorinostat; WO: wash-off.


Subject(s)
Autophagy , Melanoma , ATPases Associated with Diverse Cellular Activities/genetics , Autophagy/genetics , Drug Resistance , Fatty Acids/metabolism , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Membrane Proteins/metabolism , Peroxisomes/metabolism , TOR Serine-Threonine Kinases/metabolism
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120094, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34175764

ABSTRACT

Esterase activity is often used as an index to evaluate the health status of cells and plays an important role in cell metabolism and apoptosis. Herein, we develop two fluorescent probes for visual biosensing of esterase activity and imaging in living cells. In vitro, after the introduction of esterase, enzymolysis destroys the ester bond of the probe, causing the fluorescent color of probe changes from yellow to red, thus realizing the visual strategy for determination of esterase activity, with high sensitivity and selectivity. Especially, probe VA, 2-(4-acetoxystyryl)-3-ethyl-1,1-dimethyl- 1H-benzo[e]indol-3-ium, exhibits higher sensitivity with a lower detection limit (up to 7.15 × 10-6 U/mL). In the cell experiment, the fluorescent probe VA also shows good biocompatibility and high spatial resolution, and is successfully applied to the intracellular fluorescent imaging and biosensing of esterase in living cells. More importantly, the probe VA can judge the unhealthy state of H2O2-induced HeLa cells using dual-fluorescence signals. The results confirm that the fluorescence method is a reliable tool for detecting endogenous esterase in living biological system.


Subject(s)
Fluorescent Dyes , Hydrogen Peroxide , Esterases , HeLa Cells , Humans , Spectrometry, Fluorescence
14.
Onco Targets Ther ; 12: 5467-5484, 2019.
Article in English | MEDLINE | ID: mdl-31371986

ABSTRACT

The development of small-molecule tyrosine kinase inhibitors (TKIs) that target the epidermal growth factor receptor (EGFR) has revolutionized the management of non-small-cell lung cancer (NSCLC). Because these drugs are commonly used in combination with other types of medication, the risk of clinically significant drug-drug interactions (DDIs) is an important consideration, especially for patients using multiple drugs for coexisting medical conditions. Clinicians need to be aware of the potential for clinically important DDIs when considering therapeutic options for individual patients. In this article, we describe the main mechanisms underlying DDIs with the EGFR-TKIs that are currently approved for the treatment of NSCLC, and, specifically, the potential for interactions mediated via effects on gastrointestinal pH, cytochrome P450-dependent metabolism, uridine diphosphate-glucuronosyltransferase, and transporter proteins. We review evidence of such DDIs with the currently approved EGFR-TKIs (gefitinib, erlotinib, afatinib, osimertinib, and icotinib) and discuss several information sources that are available online to aid clinical decision-making. We conclude by summarizing the most clinically relevant DDIs with these EFGR-TKIs and provide recommendations for managing, minimizing, or avoiding DDIs with the different agents.

15.
Neuropeptides ; 56: 105-13, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26707636

ABSTRACT

Neuropeptide Y (NPY) is a neuropeptide secreted by sensory nerve fibers distributed in the marrow and vascular canals of bone tissue. However, the effect of NPY on the osteogenic ability of bone marrow mesenchymal stem cells (BMSCs) remains controversial and has not been thoroughly investigated. To explore the osteogenic activity and the migration and VEGF expression capabilities of BMSCs affected by NPY, as well as the underlying mechanisms, we investigated the potential relationships among NPY, osteoblastic differentiation, angiogenesis and canonical Wnt signaling in BMSCs. NPY was observed to regulate osteoblastic differentiation at concentrations ranging from 10(-8) to 10(-12)mol/L, and the effects of NPY on the levels of Wnt signaling proteins were detected using Western blotting. To unravel the underlying mechanism, BMSCs were treated with NPY after pretreatment with the NPY-1R antagonist PD160170 or the Wnt pathway antagonist DKK1, and gene expression levels of Wnt signaling molecules and osteoblastic markers were determined by qPCR. Our results indicated that NPY significantly promoted osteoblastic differentiation of BMSCs in a concentration-dependent manner and up-regulated the expression levels of proteins including ß-catenin and p-GSK-3ß and the mRNA level of ß-catenin. Moreover, NPY promoted the translocation of ß-catenin into nucleus. The effects of NPY were inhibited by PD160170 or DKK1. Additionally, NPY enhanced the ability of BMSCs to migrate and promoted the expression of vascular endothelial growth factor (VEGF) as measured by immunocytochemical staining, qPCR and Western blot. These results suggested that NPY may stimulate osteoblastic differentiation via activating canonical Wnt signaling and enhance the angiogenic capacity of BMSCs.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells/physiology , Neuropeptide Y/physiology , Osteoblasts/physiology , Vascular Endothelial Growth Factor A/metabolism , Animals , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/drug effects , Cell Movement/drug effects , Cells, Cultured , In Vitro Techniques , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Neuropeptide Y/administration & dosage , Osteoblasts/drug effects , Rats , Wnt Signaling Pathway/drug effects
16.
Stem Cells Int ; 2015: 270328, 2015.
Article in English | MEDLINE | ID: mdl-26106423

ABSTRACT

Substance P (SP) contributes to bone formation by stimulating the proliferation and differentiation of bone marrow stromal cells (BMSCs); however, the possible involved effect of SP on apoptosis induced by serum deprivation (SD) in BMSCs is unclear. To explore the potential protective effect of SP and its mechanism, we investigated the relationships among SP, apoptosis induced by SD, and Wnt signaling in BMSCs. SP exhibited a protective effect, as indicated by a reduction in the apoptotic rate, nuclear condensation, caspase-3 and caspase-9 activation, and the ratio of Bax/Bcl-2 that was observed after 24 h of SD. This protective effect was blocked by the inhibition of Wnt signaling or antagonism of the NK-1 receptor. Moreover, SP promoted the mRNA and protein expression of Wnt signaling molecules such as ß-catenin, p-GSK-3ß, c-myc, and cyclin D1 in addition to the nuclear translocation of ß-catenin, indicating that active Wnt signaling is involved in SP inhibition of apoptosis. Our results revealed that mediated by the NK-1 receptor, SP exerts an inhibitory effect on serum deprivation induced apoptosis in BMSCs that is related to the activation of canonical Wnt signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...