Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 108(8): 1898-1908, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36735959

ABSTRACT

CONTEXT: Primary ovarian insufficiency (POI) is a heterogeneous disease with an unknown underlying trigger or root cause. Recently many studies evaluated noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNA (lncRNAs), circular RNAs (circRNAs), and small interfering RNAs (siRNAs) for their associations with POI. EVIDENCE ACQUISITION: In this review, we outline the biogenesis of various ncRNAs relevant to POI and summarize the evidence for their roles in the regulation of disease occurrence and progression. Articles from 2003 to 2022 were selected for relevance, validity, and quality from results obtained in PubMed and Google Scholar using the following search terms: noncoding RNAs; primary ovarian insufficiency; premature ovarian failure; noncoding RNAs and primary ovarian insufficiency/premature ovarian failure; miRNAs and primary ovarian insufficiency/premature ovarian failure; lncRNAs and primary ovarian insufficiency/premature ovarian failure; siRNAs and primary ovarian insufficiency/premature ovarian failure; circRNAs and primary ovarian insufficiency/premature ovarian failure; pathophysiology; and potential treatment. All articles were independently screened for eligibility by the authors. EVIDENCE SYNTHESIS: This review summarizes the biological functions and synthesis of miRNAs, lncRNAs, siRNAs, and circRNAs in POI and discusses the findings of clinical and in vitro and in vivo studies. Although there is variability in the findings of individual studies, overall the available literature justifies the conclusion that dysregulated ncRNAs play significant roles in POI. CONCLUSION: The potential of ncRNAs in the treatment of POI requires further investigation, as ncRNAs derived from mesenchymal stem cell-secreted exosomes play pivotal roles and have considerable therapeutic potential in a multitude of diseases.


Subject(s)
MicroRNAs , Primary Ovarian Insufficiency , RNA, Long Noncoding , Female , Humans , RNA, Long Noncoding/genetics , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/therapy , RNA, Circular , MicroRNAs/genetics
2.
Front Endocrinol (Lausanne) ; 13: 971564, 2022.
Article in English | MEDLINE | ID: mdl-36440230

ABSTRACT

Polycystic ovarian syndrome (PCOS) is one of the most common endocrinological disorders affecting between 6 to 20% of reproductive aged women. However, the etiology of PCOS is still unclear. Epidermal growth factor receptor (EGFR) plays a critical role in the growth and development of ovarian follicles. In our previous study, we showed that the expression level of EGFR was significantly higher in the cumulus granulosa cells from women with PCOS than that of normal women, suggesting that EGFR may play a potential role in the pathogenesis of PCOS. The present study further evaluated the association between EGFR and PCOS through both in clinical observation and animal experiments. We firstly validated the differential expression of EGFR in cumulus granulosa cells between PCOS patients and normal subjects by qRT-PCR and immunofluorescence staining. Then we generated a mouse model (n=20) of PCOS by injecting dehydroepiandrosterone (DHEA). The PCOS mice were then injected with an E corpus GFR inhibitor (AG1478) (n=10), which significantly improved the sex hormone levels in the estrous cycle stage, and the serum levels of LH, FSH and testosterone were compared with the PCOS mice without EGFR inhibitor treatment (n=10). Decreasing the expression level of EGFR in the PCOS mice also improved the ovulatory function of their ovaries which was indicated by the multifarious follicle stage in these mice as compared with the PCOS mice without EGFR inhibitor treatment. Also, the number of corpopa lutea were higher in the control group and the EGFR inhibitor treated group than in the PCOS group. The sex hormone levels and reproductive function were not significantly different between the control mice and the PCOS mice treated with the EGFR inhibitor. Our results demonstrated that EGF/EGFR signaling affected the proliferation of cumulus granulosa cells, oocyte maturation and meiosis, and played a potential role in the pathogenesis of PCOS. Therefore, the selective inhibition of EGFR may serve as a novel strategy for the clinical management of PCOS.


Subject(s)
Polycystic Ovary Syndrome , Humans , Female , Mice , Animals , Granulosa Cells/metabolism , ErbB Receptors/metabolism , Ovarian Follicle/metabolism , Gonadal Steroid Hormones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...