Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Digit Health ; 5: 1301019, 2023.
Article in English | MEDLINE | ID: mdl-38075521

ABSTRACT

Smartphone camera photoplethysmography (cPPG) enables non-invasive pulse oximetry and hemoglobin concentration measurements. However, the aesthetic-driven non-linearity in default image capture and preprocessing pipelines poses challenges for consistency and transferability of cPPG across devices. This work identifies two key parameters-tone mapping and sensor threshold-that significantly impact cPPG measurements. We propose a novel calibration method to linearize camera measurements, thus enhancing consistency and transferability of cPPG across devices. A benchtop calibration system is also presented, leveraging a microcontroller and LED setup to characterize these parameters for each phone model. Our validation studies demonstrate that, with appropriate calibration and camera settings, cPPG applications can achieve 74% higher accuracy than with default settings. Moreover, our calibration method proves effective across different smartphone models (N=4), and calibrations performed on one phone can be applied to other smartphones of the same model (N=6), enhancing consistency and scalability of cPPG applications.

2.
Sci Rep ; 13(1): 8105, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248245

ABSTRACT

We propose an ultra-low-cost at-home blood pressure monitor that leverages a plastic clip with a spring-loaded mechanism to enable a smartphone with a flash LED and camera to measure blood pressure. Our system, called BPClip, is based on the scientific premise of measuring oscillometry at the fingertip to measure blood pressure. To enable a smartphone to measure the pressure applied to the digital artery, a moveable pinhole projection moves closer to the camera as the user presses down on the clip with increased force. As a user presses on the device with increased force, the spring-loaded mechanism compresses. The size of the pinhole thus encodes the pressure applied to the finger. In conjunction, the brightness fluctuation of the pinhole projection correlates to the arterial pulse amplitude. By capturing the size and brightness of the pinhole projection with the built-in camera, the smartphone can measure a user's blood pressure with only a low-cost, plastic clip and an app. Unlike prior approaches, this system does not require a blood pressure cuff measurement for a user-specific calibration compared to pulse transit time and pulse wave analysis based blood pressure monitoring solutions. Our solution also does not require specialized smartphone models with custom sensors. Our early feasibility finding demonstrates that in a validation study with N = 29 participants with systolic blood pressures ranging from 88 to 157 mmHg, the BPClip system can achieve a mean absolute error of 8.72 and 5.49 for systolic and diastolic blood pressure, respectively. In an estimated cost projection study, we demonstrate that in small-batch manufacturing of 1000 units, the material cost is an estimated $0.80, suggesting that at full-scale production, our proposed BPClip concept can be produced at very low cost compared to existing cuff-based monitors for at-home blood pressure management.


Subject(s)
Blood Pressure Determination , Smartphone , Humans , Blood Pressure/physiology , Blood Pressure Monitors , Calibration , Pulse Wave Analysis
3.
Res Sq ; 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36909577

ABSTRACT

We propose BPClip, a less than $ 1 USD blood pressure monitor that leverages a plastic clip with a spring-loaded mechanism to enable any smartphone with a flash LED and a camera to measure blood pressure. Unlike prior approaches, our system measured systolic, mean, and diastolic blood pressure using oscillometric measurements that avoid cumbersome per-user calibrations and does not require specialized smartphone models with custom sensors.

4.
Nature ; 602(7898): 632-638, 2022 02.
Article in English | MEDLINE | ID: mdl-35140404

ABSTRACT

Animals must set behavioural priority in a context-dependent manner and switch from one behaviour to another at the appropriate moment1-3. Here we probe the molecular and neuronal mechanisms that orchestrate the transition from feeding to courtship in Drosophila melanogaster. We find that feeding is prioritized over courtship in starved males, and the consumption of protein-rich food rapidly reverses this order within a few minutes. At the molecular level, a gut-derived, nutrient-specific neuropeptide hormone-Diuretic hormone 31 (Dh31)-propels a switch from feeding to courtship. We further address the underlying kinetics with calcium imaging experiments. Amino acids from food acutely activate Dh31+ enteroendocrine cells in the gut, increasing Dh31 levels in the circulation. In addition, three-photon functional imaging of intact flies shows that optogenetic stimulation of Dh31+ enteroendocrine cells rapidly excites a subset of brain neurons that express Dh31 receptor (Dh31R). Gut-derived Dh31 excites the brain neurons through the circulatory system within a few minutes, in line with the speed of the feeding-courtship behavioural switch. At the circuit level, there are two distinct populations of Dh31R+ neurons in the brain, with one population inhibiting feeding through allatostatin-C and the other promoting courtship through corazonin. Together, our findings illustrate a mechanism by which the consumption of protein-rich food triggers the release of a gut hormone, which in turn prioritizes courtship over feeding through two parallel pathways.


Subject(s)
Drosophila Proteins , Insect Hormones , Animals , Courtship , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Insect Hormones/metabolism , Male , Nutrients , Sexual Behavior, Animal/physiology
5.
Article in English | MEDLINE | ID: mdl-38031623

ABSTRACT

With recent developments in medical and psychiatric research surrounding pupillary response, cheap and accessible pupillometers could enable medical benefits from early neurological disease detection to measurements of cognitive load. In this paper, we introduce a novel smartphone-based pupillometer to allow for future development in clinical research surrounding at-home pupil measurements. Our solution utilizes a NIR front-facing camera for facial recognition paired with the RGB selfie camera to perform tracking of absolute pupil dilation with sub-millimeter accuracy. In comparison to a gold standard pupillometer during a pupillary light reflex test, the smartphone-based system achieves a median MAE of 0.27mm for absolute pupil dilation tracking and a median error of 3.52% for pupil dilation change tracking. Additionally, we remotely deployed the system to older adults as part of a usability study that demonstrates promise for future smartphone deployments to remotely collect data in older, inexperienced adult users operating the system themselves.

6.
Oncotarget ; 7(32): 51211-51222, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27323410

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease marked by frequent recurrence and metastasis and stagnant survival rates. To enhance molecular knowledge of HNSCC and define a non-coding RNA (ncRNA) landscape of the disease, we profiled the transcriptome-wide dysregulation of long non-coding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA) using RNA-sequencing data from 422 HNSCC patients in The Cancer Genome Atlas (TCGA). 307 non-coding transcripts differentially expressed in HNSCC were significantly correlated with patient survival, and associated with mutations in TP53, CDKN2A, CASP8, PRDM9, and FBXW7 and copy number variations in chromosomes 3, 5, 7, and 18. We also observed widespread ncRNA correlation to concurrent TP53 and chromosome 3p loss, a compelling predictor of poor prognosis in HNSCCs. Three selected ncRNAs were additionally associated with tumor stage, HPV status, and other clinical characteristics, and modulation of their expression in vitro reveals differential regulation of genes involved in epithelial-mesenchymal transition and apoptotic response. This comprehensive characterization of the HNSCC non-coding transcriptome introduces new layers of understanding for the disease, and nominates a novel panel of transcripts with potential utility as prognostic markers or therapeutic targets.


Subject(s)
Carcinoma, Squamous Cell/genetics , Head and Neck Neoplasms/genetics , RNA, Untranslated/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/pathology , Humans , Male , MicroRNAs/genetics , Middle Aged , RNA, Long Noncoding/genetics , Sequence Analysis, RNA , Squamous Cell Carcinoma of Head and Neck
7.
Oral Oncol ; 52: 58-65, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26547127

ABSTRACT

OBJECTIVES: Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. MATERIALS AND METHODS: HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 h to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. RESULTS: E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. CONCLUSION: E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed.


Subject(s)
Cell Line, Tumor/drug effects , DNA Damage/drug effects , Electronic Nicotine Delivery Systems/adverse effects , Epithelial Cells/drug effects , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Death/drug effects , Head and Neck Neoplasms/metabolism , Humans , Volatilization
8.
RNA ; 21(6): 1122-34, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25904139

ABSTRACT

Head and neck squamous cell carcinoma persists as one of the most common and deadly malignancies, with early detection and effective treatment still posing formidable challenges. To expand our currently sparse knowledge of the noncoding alterations involved in the disease and identify potential biomarkers and therapeutic targets, we globally profiled the dysregulation of small nucleolar and long noncoding RNAs in head and neck tumors. Using next-generation RNA-sequencing data from 40 pairs of tumor and matched normal tissues, we found 2808 long noncoding RNA (lncRNA) transcripts significantly differentially expressed by a fold change magnitude ≥2. Meanwhile, RNA-sequencing analysis of 31 tumor-normal pairs yielded 33 significantly dysregulated small nucleolar RNAs (snoRNA). In particular, we identified two dramatically down-regulated lncRNAs and one down-regulated snoRNA whose expression levels correlated significantly with overall patient survival, suggesting their functional significance and clinical relevance in head and neck cancer pathogenesis. We confirmed the dysregulation of these noncoding RNAs in head and neck cancer cell lines derived from different anatomic sites, and determined that ectopic expression of the two lncRNAs inhibited key EMT and stem cell genes and reduced cellular proliferation and migration. As a whole, noncoding RNAs are pervasively dysregulated in head and squamous cell carcinoma. The precise molecular roles of the three transcripts identified warrants further characterization, but our data suggest that they are likely to play substantial roles in head and neck cancer pathogenesis and are significantly associated with patient survival.


Subject(s)
Carcinoma, Squamous Cell/genetics , Gene Expression Profiling/methods , Head and Neck Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Small Nucleolar/genetics , Sequence Analysis, RNA/methods , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/pathology , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...