Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38611539

ABSTRACT

Fatty acyl-CoA reductase (FAR) is an important NADPH-dependent enzyme that can produce primary alcohol from fatty acyl-CoA or fatty acyl-carrier proteins as substrates. It plays a pivotal role in plant growth, development, and stress resistance. Herein, we performed genome-wide identification and expression analysis of FAR members in rice using bioinformatics methods. A total of eight OsFAR genes were identified, and the OsFARs were comprehensively analyzed in terms of phylogenetic relationships, duplication events, protein motifs, etc. The cis-elements of the OsFARs were predicted to respond to growth and development, light, hormones, and abiotic stresses. Gene ontology annotation analysis revealed that OsFAR proteins participate in biological processes as fatty acyl-CoA reductase during lipid metabolism. Numerous microRNA target sites were present in OsFARs mRNAs. The expression analysis showed that OsFARs were expressed at different levels during different developmental periods and in various tissues. Furthermore, the expression levels of OsFARs were altered under abiotic stresses, suggesting that FARs may be involved in abiotic stress tolerance in rice. The findings presented here serve as a solid basis for further exploring the functions of OsFARs.

2.
Trends Plant Sci ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38519324

ABSTRACT

Reactive oxygen species (ROS) are the key players in regulating developmental processes of plants. Plants have evolved a large array of gene families to facilitate the ROS-regulated developmental process in roots and leaves. However, the cellular targets of ROS during plant evolutionary development are still elusive. Here, we found early evolution and large expansions of protein families such as mitogen-activated protein kinases (MAPK) in the evolutionarily important plant lineages. We review the recent advances in interactions among ROS, phytohormones, gasotransmitters, and protein kinases. We propose that these signaling molecules act in concert to maintain cellular ROS homeostasis in developmental processes of root and leaf to ensure the fine-tuning of plant growth for better adaptation to the changing climate.

3.
Plant Biotechnol J ; 22(4): 915-928, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37983630

ABSTRACT

Grain weight is an important determinant of grain yield. However, the underlying regulatory mechanisms for grain size remain to be fully elucidated. Here, we identify a rice mutant grain weight 9 (gw9), which exhibits larger and heavier grains due to excessive cell proliferation and expansion in spikelet hull. GW9 encodes a nucleus-localized protein containing both C2H2 zinc finger (C2H2-ZnF) and VRN2-EMF2-FIS2-SUZ12 (VEFS) domains, serving as a negative regulator of grain size and weight. Interestingly, the non-frameshift mutations in C2H2-ZnF domain result in increased plant height and larger grain size, whereas frameshift mutations in both C2H2-ZnF and VEFS domains lead to dwarf and malformed spikelet. These observations indicated the dual functions of GW9 in regulating grain size and floral organ identity through the C2H2-ZnF and VEFS domains, respectively. Further investigation revealed the interaction between GW9 and the E3 ubiquitin ligase protein GW2, with GW9 being the target of ubiquitination by GW2. Genetic analyses suggest that GW9 and GW2 function in a coordinated pathway controlling grain size and weight. Our findings provide a novel insight into the functional role of GW9 in the regulation of grain size and weight, offering potential molecular strategies for improving rice yield.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Ubiquitination , Gene Expression Regulation, Plant/genetics
4.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203283

ABSTRACT

Stearoyl-acyl carrier protein (ACP) Δ9 desaturase (SAD) is a critical fatty acid dehydrogenase in plants, playing a prominent role in regulating the synthesis of unsaturated fatty acids (UFAs) and having a significant impact on plant growth and development. In this study, we conducted a comprehensive genomic analysis of the SAD family in barley (Hordeum vulgare L.), identifying 14 HvSADs with the FA_desaturase_2 domain, which were divided into four subgroups based on sequence composition and phylogenetic analysis, with members of the same subgroup possessing similar genes and motif structures. Gene replication analysis suggested that tandem and segmental duplication may be the major reasons for the expansion of the SAD family in barley. The promoters of HvSADs contained various cis-regulatory elements (CREs) related to light, abscisic acid (ABA), and methyl jasmonate (MeJA). In addition, expression analysis indicated that HvSADs exhibit multiple tissue expression patterns in barley as well as different response characteristics under three abiotic stresses: salt, drought, and cold. Briefly, this evolutionary and expression analysis of HvSADs provides insight into the biological functions of barley, supporting a comprehensive analysis of the regulatory mechanisms of oil biosynthesis and metabolism in plants under abiotic stress.


Subject(s)
Hordeum , Hordeum/genetics , Acyl Carrier Protein , Phylogeny , Genomics , Fatty Acid Desaturases
5.
Front Plant Sci ; 13: 1088281, 2022.
Article in English | MEDLINE | ID: mdl-36582638

ABSTRACT

Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a class of plant-specific serine/threonine (Ser/Thr) protein kinase that plays an important role in rice stress tolerance, growth and development. However, systematic bioinformatics and expression pattern analysis have not been reported. In the current study, ten OsSnRK2 genes were identified in the rice genome and located on 7 chromosomes, which can be classified into three subfamilies (I, II, and III). Many cis-regulatory elements were identified in the promoter region of OsSnRK2 genes, including hormone response elements, defense and stress responsive elements, indicating that the OsSnRK2 family may play a crucial role in response to hormonal and abiotic stress. Quantitative tissue analysis showed that OsSnRK2 genes expressed in all tissues of rice, but the expression abundance varied from different tissues and showed varietal variability. In addition, expression pattern of OsSnRK2 were analyzed under abiotic stress (salt, drought, salt and drought) and showed obvious difference in diverse abiotic stress. In general, these results provide useful information for understanding the OsSnRK2 gene family and analyzing its functions in rice in response to ABA, salt and drought stress, especially salt-drought combined stress.

6.
Nat Plants ; 8(9): 1038-1051, 2022 09.
Article in English | MEDLINE | ID: mdl-36050461

ABSTRACT

The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.


Subject(s)
Ferns , DNA Transposable Elements , Evolution, Molecular , Ferns/genetics , Genome, Plant , Plants/genetics
7.
Plants (Basel) ; 11(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36015472

ABSTRACT

Plant lesion mutation usually refers to the phenomenon of cell death in green tissues before senescence in the absence of external stress, and such mutants also show enhanced resistance to some plant pathogens. The occurrence of lesion mimic mutants in rice is affected by gene mutation, reactive oxygen species accumulation, an uncontrolled programmed cell death system, and abiotic stress. At present, many lesion mimic mutants have been identified in rice, and some genes have been functionally analyzed. This study reviews the occurrence mechanism of lesion mimic mutants in rice. It analyzes the function of rice lesion mimic mutant genes to elucidate the molecular regulation pathways of rice lesion mimic mutants in regulating plant disease resistance.

8.
Plants (Basel) ; 11(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893632

ABSTRACT

The myeloblastosis (MYB) family comprises a large group of transcription factors (TFs) that has a variety of functions. Among them, the R2R3-MYB type of proteins are the largest group in plants, which are involved in controlling various biological processes such as plant growth and development, physiological metabolism, defense, and responses to abiotic and biotic stresses. In this study, bioinformatics was adopted to conduct genome-wide identification of the R2R3-MYB TFs in rice. We identified 190 MYB TFs (99 R2R3-MYBs), which are unevenly distributed on the 12 chromosomes of rice. Based on the phylogenetic clustering and protein sequence characteristics, OsMYBs were classified into five subgroups, and 59.6% of the Os2R_MYB genes contained two introns. Analysis of cis-acting elements in the 2000 bp upstream region of Os2R_MYB genes showed that all Os2R_MYB genes contained plant hormones-related or stress-responsive elements since 91.9%, 79.8%, 79.8%, and 58.6% of Os2R_MYB genes contain ABRE, TGACG, CGTCA, and MBS motifs, respectively. Protein-protein network analysis showed that the Os2R_MYBs were involved in metabolic process, biosynthetic process, and tissue development. In addition, some genes showed a tissue-specific or developmental-stage-specific expression pattern. Moreover, the transcription levels of 20 Os2R_MYB genes under polyethylene glycol (PEG) and cadmium chloride (CdCl2) stress inducers were dissected by qRT-PCR. The results indicated genes with an altered expression upon PEG or CdCl2 stress induction. These results potentially supply a basis for further research on the role that Os2R_MYB genes play in plant development and stress responses.

9.
Front Plant Sci ; 13: 875038, 2022.
Article in English | MEDLINE | ID: mdl-35586211

ABSTRACT

Leaf and panicle are important nutrient and yield organs in rice, respectively. Although several genes controlling lesion mimic leaf and panicle abortion have been identified, a few studies have reported the involvement of a single gene in the production of both the traits. In this study, we characterized a panicle abortion mutant, lesion mimic leaf and panicle apical abortion (lmpa), which exhibits lesions on the leaf and causes degeneration of apical spikelets. Molecular cloning revealed that LMPA encodes a proton pump ATPase protein that is localized in the plasma membrane and is highly expressed in leaves and panicles. The analysis of promoter activity showed that the insertion of a fragment in the promoter of lmpa caused a decrease in the transcription level. Cellular and histochemistry analysis indicated that the ROS accumulated and cell death occurred in lmpa. Moreover, physiological experiments revealed that lmpa was more sensitive to high temperatures and salt stress conditions. These results provide a better understanding of the role of LMPA in panicle development and lesion mimic formation by regulating ROS homeostasis.

10.
Int J Mol Sci ; 22(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34830190

ABSTRACT

Adaptation to unfavorable abiotic stresses is one of the key processes in the evolution of plants. Calcium (Ca2+) signaling is characterized by the spatiotemporal pattern of Ca2+ distribution and the activities of multi-domain proteins in integrating environmental stimuli and cellular responses, which are crucial early events in abiotic stress responses in plants. However, a comprehensive summary and explanation for evolutionary and functional synergies in Ca2+ signaling remains elusive in green plants. We review mechanisms of Ca2+ membrane transporters and intracellular Ca2+ sensors with evolutionary imprinting and structural clues. These may provide molecular and bioinformatics insights for the functional analysis of some non-model species in the evolutionarily important green plant lineages. We summarize the chronological order, spatial location, and characteristics of Ca2+ functional proteins. Furthermore, we highlight the integral functions of calcium-signaling components in various nodes of the Ca2+ signaling pathway through conserved or variant evolutionary processes. These ultimately bridge the Ca2+ cascade reactions into regulatory networks, particularly in the hormonal signaling pathways. In summary, this review provides new perspectives towards a better understanding of the evolution, interaction and integration of Ca2+ signaling components in green plants, which is likely to benefit future research in agriculture, evolutionary biology, ecology and the environment.


Subject(s)
Calcium Signaling/genetics , Calcium/metabolism , Evolution, Molecular , Plants/metabolism , Stress, Physiological/genetics , Adaptation, Physiological/genetics , Gene Expression Regulation, Plant , Membrane Transport Proteins/metabolism , Phylogeny , Plant Proteins/metabolism , Plants/genetics
11.
Plants (Basel) ; 10(9)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34579382

ABSTRACT

In recent years, cadmium (Cd) pollution in soil has increased with increasing industrial activities, which has restricted crop growth and agricultural development. The heavy metal ATPase (HMA) gene family contributes to heavy metal stress resistance in plants. In this study, 21 HMA genes (HvHMAs) were identified in barley (Hordeumvulgare L., Hv) using bioinformatics methods. Based on phylogenetic analysis and domain distribution, barley HMA genes were divided into five groups (A-E), and complete analyses were performed in terms of physicochemical properties, structural characteristics, conserved domains, and chromosome localization. The expression pattern analysis showed that most HvHMA genes were expressed in barley and exhibited tissue specificity. According to the fragments per kilobase of exon per million fragments values in shoots from seedlings at the 10 cm shoot stage (LEA) and phylogenetic analysis, five HvHMA genes were selected for expression analysis under Cd stress. Among the five HvHMA genes, three (HvHMA1, HvHMA3, and HvHMA4) were upregulated and two (HvHMA2 and HvHMA6) were downregulated following Cd treatments. This study serves as a foundation for clarifying the functions of HvHMA proteins in the heavy metal stress resistance of barley.

12.
New Phytol ; 230(3): 1201-1213, 2021 05.
Article in English | MEDLINE | ID: mdl-33280113

ABSTRACT

Ferns appear in the fossil record some 200 Myr before angiosperms. However, as angiosperm-dominated forest canopies emerged in the Cretaceous period there was an explosive diversification of modern (leptosporangiate) ferns, which thrived in low, blue-enhanced light beneath angiosperm canopies. A mechanistic explanation for this transformative event in the diversification of ferns has remained elusive. We used physiological assays, transcriptome analysis and evolutionary bioinformatics to investigate a potential connection between the evolution of enhanced stomatal sensitivity to blue light in modern ferns and the rise of angiosperm-dominated forests in the geological record. We demonstrate that members of the largest subclade of leptosporangiate ferns, Polypodiales, have significantly faster stomatal response to blue light than more ancient fern lineages and a representative angiosperm. We link this higher sensitivity to levels of differentially expressed genes in blue-light signaling, particularly in the cryptochrome (CRY) signaling pathway. Moreover, CRYs of the Polypodiales examined show gene duplication events between 212.9-196.9 and 164.4-151.8 Ma, when angiosperms were emerging, which are lacking in other major clades of extant land plants. These findings suggest that evolution of stomatal blue-light sensitivity helped modern ferns exploit the shady habitat beneath angiosperm forest canopies, fueling their Cretaceous hyperdiversification.


Subject(s)
Explosive Agents , Ferns , Magnoliopsida , Biological Evolution , Ferns/genetics , Forests , Fossils , Magnoliopsida/genetics , Phylogeny
13.
Plants (Basel) ; 9(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998428

ABSTRACT

Adenosine triphosphate-binding cassette transporters (ABC transporters) participate in various plant growth and abiotic stress responses. In the present study, 131 ABC genes in barley were systematically identified using bioinformatics. Based on the classification method of the family in rice, these members were classified into eight subfamilies (ABCA-ABCG, ABCI). The conserved domain, amino acid composition, physicochemical properties, chromosome distribution, and tissue expression of these genes were predicted and analyzed. The results showed that the characteristic motifs of the barley ABC genes were highly conserved and there were great diversities in the homology of the transmembrane domain, the number of exons, amino acid length, and the molecular weight, whereas the span of the isoelectric point was small. Tissue expression profile analysis suggested that ABC genes possess non-tissue specificity. Ultimately, 15 differentially expressed genes exhibited diverse expression responses to stress treatments including drought, cadmium, and salt stress, indicating that the ABCB and ABCG subfamilies function in the response to abiotic stress in barley.

14.
Front Plant Sci ; 11: 1143, 2020.
Article in English | MEDLINE | ID: mdl-32849702

ABSTRACT

Leaf shape is an important agronomic trait for constructing an ideal plant type in rice, and high-density genetic map is facilitative in improving accuracy and efficiency for quantitative trait loci (QTL) analysis of leaf trait. In this study, a high-density genetic map contained 10,760 specific length amplified fragment sequencing (SLAF) markers was established based on 149 recombinant inbred lines (RILs) derived from the cross between Rekuangeng (RKG) and Taizhong1 (TN1), which exhibited 1,613.59 cM map distance with an average interval of 0.17 cM. A total of 24 QTLs were detected and explained the phenotypic variance ranged from 9% to 33.8% related to the leaf morphology across two areas. Among them, one uncloned major QTL qTLLW1 (qTLL1 and qTLLW1) involved in regulating leaf length and leaf width with max 33.8% and 22.5% phenotypic variance respectively was located on chromosome 1, and another major locus qTLW4 affecting leaf width accounted for max 25.3% phenotypic variance was mapped on chromosome 4. Fine mapping and qRT-PCR expression analysis indicated that qTLW4 may be allelic to NAL1 (Narrow leaf 1) gene.

15.
Plant Physiol ; 184(1): 251-265, 2020 09.
Article in English | MEDLINE | ID: mdl-32680975

ABSTRACT

Rice (Oryza sativa) spikelets have a unique inflorescence structure, and the mechanisms regulating their development are not yet fully understood. Moreover, approaches to manipulate spikelet development have the potential to increase grain yield. In this study, we identified and characterized a recessive spikelet mutant, namely more floret1 (mof1). The mof1 mutant has a delayed transition from the spikelet to the floral meristem, inducing the formation of extra lemma-like and palea-like organs. In addition, the main body of the palea was reduced, and the sterile lemma was enlarged and partially acquired hull (lemma and/or palea) identity. We used map-based cloning to identify the MOF1 locus and confirmed our identification by complementation and by generating new mof1 alleles using CRISPR-Cas9 gene editing. MOF1 encodes a MYB domain protein with the typical ethylene response factor-associated amphiphilic repression motifs, is expressed in all organs and tissues, and has a strong repression effect. MOF1 localizes to the nucleus and interacts with TOPLESS-RELATED PROTEINs to possibly repress the expression of downstream target genes. Taken together, our results reveal that MOF1 plays an important role in the regulation of organ identity and spikelet determinacy in rice.


Subject(s)
Flowers/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Alleles , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Inflorescence/genetics , Inflorescence/metabolism , Meristem/genetics , Meristem/metabolism , Oryza/genetics , Plant Proteins/genetics , Transcription Factors/genetics
16.
J Exp Bot ; 71(10): 3012-3023, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32061090

ABSTRACT

Virus-induced flowering (VIF) exploits RNA or DNA viruses to express flowering time genes to induce flowering in plants. Such plant virus-based tools have recently attracted widespread attention for their fundamental and applied uses in flowering physiology and in accelerating breeding in dicotyledonous crops and woody fruit-trees. We now extend this technology to a monocot grass and a cereal crop. Using a Foxtail mosaic virus (FoMV)-based VIF system, dubbed FoMViF, we showed that expression of florigenic Flowering Locus T (FT) genes can promote early flowering and spikelet development in proso millet, a C4 grass species with potential as a nutritional food and biofuel resource, and in non-vernalized C3 wheat, a major food crop worldwide. Floral and spikelet/grain induction in the two monocot plants was caused by the virally expressed untagged or FLAG-tagged FT orthologs, and the florigenic activity of rice Hd3a was more pronounced than its dicotyledonous counterparts in proso millet. The FoMViF system is easy to use and its efficacy to induce flowering and early spikelet/grain production is high. In addition to proso millet and wheat, we envisage that FoMViF will be also applicable to many economically important monocotyledonous food and biofuel crops.


Subject(s)
Plant Breeding , Potexvirus , Crops, Agricultural/genetics , Triticum
17.
Front Plant Sci ; 11: 620922, 2020.
Article in English | MEDLINE | ID: mdl-33424912

ABSTRACT

Grain size is an important agronomic trait determines yield in barley, and a high-density genetic map is helpful to accurately detect quantitative trait loci (QTLs) related to grain traits. Using specific-locus amplified fragment sequencing (SLAF-seq) technology, a high-density genetic map was constructed with a population of 134 recombinant inbred lines (RILs) deriving from a cross between Golden Promise (GP) and H602, which contained 12,635 SLAFs with 26,693 SNPs, and spanned 896.74 cM with an average interval of 0.07 cM on seven chromosomes. Based on the map, a total of 16 QTLs for grain length (GL), grain width and thousand-grain weight were detected on 1H, 2H, 4H, 5H, and 6H. Among them, a major QTL locus qGL1, accounting for the max phenotypic variance of 16.7% was located on 1H, which is a new unreported QTL affecting GL. In addition, the other two QTLs, qGL5 and qTGW5, accounting for the max phenotypic variances of 20.7 and 21.1%, respectively, were identified in the same region, and sequencing results showed they are identical to HvDep1 gene. These results indicate that it is a feasible approach to construct a high-quality genetic map for QTL mapping by using SLAF markers, and the detected major QTLs qGL1, qGL5, and qTGW5 are useful for marker-assisted selection (MAS) of grain size in barley breeding.

18.
J Agric Food Chem ; 67(42): 11607-11615, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31560536

ABSTRACT

ζ-carotene desaturase (ZDS) is a key enzyme in carotenoid biosynthesis and plays an important role in plant photosynthesis. We characterized an albino leaf-color mutant obtained from ethyl methanesulfonate treatment: albino and seedling lethality 1 (ale1). The material contains a chloroplast thylakoid defect where photosynthetic pigments declined and reactive oxygen species accumulated resulting in ale1 death within 3 weeks. Positional cloning and sequencing revealed that there was a single base substitution in ALE1, which encoded a ZDS involved in carotenoid biosynthesis. RNAi and complementation tests confirmed the identity of ALE1. Subcellular localization showed that the ALE1 protein is localized in the chloroplast. Expression analysis indicated that the genes involved in chlorophyll and carotenoid biosynthesis were downregulated. We conclude that ALE1 plays an important role in chloroplast and plant growth in rice.


Subject(s)
Chloroplasts/enzymology , Oryza/growth & development , Oxidoreductases/genetics , Plant Proteins/genetics , Chlorophyll/metabolism , Chloroplasts/genetics , Gene Expression Regulation, Plant , Oryza/enzymology , Oryza/genetics , Oxidoreductases/metabolism , Photosynthesis , Plant Proteins/metabolism , RNA Interference , Seedlings/enzymology , Seedlings/genetics , Seedlings/growth & development
19.
Ecotoxicol Environ Saf ; 180: 780-788, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31154203

ABSTRACT

Cadmium (Cd) is one of the most toxic heavy metals, and its accumulation in plants will seriously affect growth and yield. In this study, Cd-sensitive line D69 and Cd-tolerant line D28 were selected, which the Cd content of D28 was higher than D69 in both above and underground parts after Cd treatment. Using a combination of two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS, the differential expression changes of phosphorylated proteins between D69 and D28 in leaves were classified and analyzed after Cd treatment. A total of 53 differentially expressed phosphoproteins were identified, which mainly involved in metabolism, signal transduction, gene expression regulation, material transport, and membrane fusion. The phosphorylated proteins of Cd-tolerant and Cd-sensitive lines were all analyzed, and found that some proteins associated with carbon metabolism, proteolytic enzymes, F-box containing transcription factors, RNA helicases, DNA replication/transcription/repair enzymes and ankyrins were detected in Cd-tolerant line D28, which might alleviate the abiotic stress caused by Cd treatment. These results will clarify the phosphorylated pathways in response and resistance to Cd stress in rice.


Subject(s)
Cadmium/toxicity , Oryza/metabolism , Plant Proteins/metabolism , Proteome/metabolism , Stress, Physiological/drug effects , Oryza/genetics , Oryza/physiology , Phosphorylation , Plant Leaves/metabolism , Plant Leaves/physiology , Soil Pollutants/toxicity
20.
BMC Plant Biol ; 19(1): 170, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31039733

ABSTRACT

BACKGROUND: Endo-ß-1,4-xylanase1 (EA), the key endoxylanase in plants, is involved in the degradation of arabinoxylan during grain germination. In barley (Hordeum vulgare L.), one gene (HvXYN-1) that encode a endo-beta-1,4-xylanase, has been cloned. However, the single nucleotide polymorphisms (SNPs) that affect the endoxylanase activity and total arabinoxylan (TAX) content have yet to be characterized. The investigation of genetic variation in HvXYN1 may facilitate a better understanding of the relationship between TAX content and EA activity in barley. RESULTS: In the current study, 56 polymorphisms were detected in HvXYN1 among 210 barley accessions collected from 34 countries, with 10 distinct haplotypes identified. The SNPs at positions 110, 305, 1045, 1417, 1504, 1597, 1880 bp in the genomic region of HvXYN1 were significantly associated with EA activity (P < 0.0001), and the sites 110, 305, and 1045 were highly significantly associated with TAX content. The amount of phenotypic variation in a given trait explained by each associated polymorphism ranged from 6.96 to 9.85%. Most notably, we found two variants at positions 1504 bp and 1880 bp in the second exon that significantly (P < 0.0001) affected EA activity; this result could be used in breeding programs to improve beer quality. In addition, African accessions had the highest EA activity and TAX content, and the richest germplasm resources were from Asia, indicating the high potential value of Asian barley. CONCLUSION: This study provided insight into understanding the relationship, EA activity, TAX content with the SNPs of HvXYN1 in barley. These SNPs can be applied as DNA markers in breeding programs to improve the quality of barley for beer brewing after further validation.


Subject(s)
Endo-1,4-beta Xylanases/metabolism , Genetic Variation , Hordeum/genetics , Plant Proteins/genetics , Xylans/metabolism , Alleles , Endo-1,4-beta Xylanases/genetics , Haplotypes , Hordeum/enzymology , Phylogeography , Plant Proteins/metabolism , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...