Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(8): e202319030, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38179851

ABSTRACT

The introduction of trifluoromethyl groups into organic molecules is of paramount importance in modern synthetic chemistry and medicinal chemistry. While methods for constructing C(sp2 )-CF3 bonds have been well established, the advancement of practical and comprehensive approaches for forming C(sp3 )-CF3 bonds remains considerably restricted. In this work, we describe an efficient and site-specific deaminative trifluoromethylation reaction of aliphatic primary amines to afford the corresponding alkyl trifluoromethyl compounds. The reaction proceeds at room temperature with readily accessible N-anomeric amide (Levin's reagent) and bench-stable bpyCu(CF3 )3 (Grushin's reagent, bpy=2,2'-bipyridine) under blue light. The protocol features mild reaction conditions, good functional group tolerance, and moderate to good yields. Remarkably, the method can be applied to the direct, late-stage trifluoromethylation of natural products and bioactive molecules. Experimental mechanistic studies were conducted, and a radical mechanism is proposed, wherein the dual roles of Grushin's reagent have been elucidated.

2.
iScience ; 26(3): 106255, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36909668

ABSTRACT

The primary amino group has been seldom utilized as a transformable functionality in organic synthesis. Reported herein is a deaminative halogenation of primary amines using N-anomeric amide as the nitrogen-deletion reagent. Both aliphatic and aromatic amines are competent substrates for direct halogenations. The mildness and robustness of the protocol are evidenced by the successful reactions of several complex- and functional group-enriched bioactive compounds or drugs. Elaboration of the resulting products provides interesting analogues of drug molecules.

3.
J Am Chem Soc ; 145(13): 7548-7558, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36947220

ABSTRACT

Electrophilic addition to alkenes is a textbook-taught reaction, yet it is not always possible to control the regioselectivity of addition to unsymmetrical 1,2-disubstituted substrates. We report the observation and applications of the ß-boron effect that accounts for high regioselectivity in electrophilic addition reactions to allylic MIDA (N-methyliminodiacetic acid) boronates. While the well-established ß-silicon effect bears partial resemblance to the observed reactivity, the silyl group is typically lost during functionalization. In contrast, the boryl moiety is retained in the product when B(MIDA) is used as the nucleophilic stabilizer. Mechanistic studies elucidate the origin of this effect and demonstrate how σ(C-B) hyperconjugation helps stabilize the incipient carbocation. This transformation represents a rare example of the stereospecific hydrohalogenation of secondary allyl MIDA-boronates that proceeds in a syn-fashion.

SELECTION OF CITATIONS
SEARCH DETAIL