Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
World J Stem Cells ; 16(5): 538-550, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817334

ABSTRACT

BACKGROUND: Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM: To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS: Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS: In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION: We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.

2.
Sci Rep ; 8(1): 11725, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082740

ABSTRACT

Soil microbial communities directly affect soil functionality through their roles in the cycling of soil nutrients and carbon storage. Microbial communities vary substantially in space and time, between soil types and under different land management. The mechanisms that control the spatial distributions of soil microbes are largely unknown as we have not been able to adequately upscale a detailed analysis of the microbiome in a few grams of soil to that of a catchment, region or continent. Here we reveal that soil microbes along a 1000 km transect have unique spatial structures that are governed mainly by soil properties. The soil microbial community assessed using Phospholipid Fatty Acids showed a strong gradient along the latitude gradient across New South Wales, Australia. We found that soil properties contributed the most to the microbial distribution, while other environmental factors (e.g., temperature, elevation) showed lesser impact. Agricultural activities reduced the variation of the microbial communities, however, its influence was local and much less than the overall influence of soil properties. The ability to predict the soil and environmental factors that control microbial distribution will allow us to predict how future soil and environmental change will affect the spatial distribution of microbes.


Subject(s)
Microbiota , Soil Microbiology , Australia , Ecosystem , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...