Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
J Agric Food Chem ; 72(18): 10596-10604, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38619869

ABSTRACT

Identification of chemical markers is important to ensure the authenticity of monofloral honey; however, the formation of chemical markers in honey has received little attention. Herein, using comparative metabolomics, we first identified chemical markers in chaste honey and then explored their formation and accumulation from nectar to mature honey. We identified agnuside and p-hydroxybenzoic acid glucosides as chemical markers for chaste honey. Besides, we developed an UHPLC-MS/MS method for quantifying these markers and found that their levels varied significantly across sample sources. We compared the presence of these compounds in chaste nectar and mature honey. The outcomes underscore that these characteristic compounds are not simply delivered from nectar to mature honey, and activities of honeybees (collecting and processing) play a pivotal role in their formation and accumulation. These observations shed light on how mature honey can form its unique qualities with a rich assortment of natural bioactive compounds, potentially supporting health benefits.


Subject(s)
Honey , Metabolomics , Plant Nectar , Tandem Mass Spectrometry , Honey/analysis , Bees/metabolism , Plant Nectar/chemistry , Plant Nectar/metabolism , Animals , Chromatography, High Pressure Liquid , Biomarkers/analysis , Biomarkers/metabolism
3.
BMC Biol ; 22(1): 70, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519936

ABSTRACT

BACKGROUND: Eriophyoid mites (Eriophyoidea) are among the largest groups in the Acariformes; they are strictly phytophagous. The higher-level phylogeny of eriophyoid mites, however, remains unresolved due to the limited number of available morphological characters-some of them are homoplastic. Nevertheless, the eriophyoid mites sequenced to date showed highly variable mitochondrial (mt) gene orders, which could potentially be useful for resolving the higher-level phylogenetic relationships. RESULTS: Here, we sequenced and compared the complete mt genomes of 153 eriophyoid mite species, which showed 54 patterns of rearranged mt gene orders relative to that of the hypothetical ancestor of arthropods. The shared derived mt gene clusters support the monophyly of eriophyoid mites (Eriophyoidea) as a whole and the monophylies of six clades within Eriophyoidea. These monophyletic groups and their relationships were largely supported in the phylogenetic trees inferred from mt genome sequences as well. Our molecular dating results showed that Eriophyoidea originated in the Triassic and diversified in the Cretaceous, coinciding with the diversification of angiosperms. CONCLUSIONS: This study reveals multiple molecular synapomorphies (i.e. shared derived mt gene clusters) at different levels (i.e. family, subfamily or tribe level) from the complete mt genomes of 153 eriophyoid mite species. We demonstrated the use of derived mt gene clusters in unveiling the higher-level phylogeny of eriophyoid mites, and underlines the origin of these mites and their co-diversification with angiosperms.


Subject(s)
Genome, Mitochondrial , Magnoliopsida , Mites , Animals , Phylogeny , Mites/genetics , Genes, Mitochondrial , Multigene Family , Magnoliopsida/genetics
4.
Biochem Genet ; 62(2): 675-697, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37395850

ABSTRACT

This study aimed to investigate the role of the long non-coding RNA (lncRNA) LINC00342-207 (LINC00342) in the development and progression of primary hepatocellular carcinoma (HCC). Forty-two surgically resected HCC tissues and corresponding paracancerous tissues were collected from October 2019 to December 2020 and examined for lncRNA LINC00342, microRNA (miR)-19a-3p, miR-545-5p, miR-203a-3p, cell cycle protein D1 (CyclinD1/CCND1), murine double minute 2 (MDM2), and fibroblast growth factor 2 (FGF2) expression. The disease-free survival and overall survival of patients with HCC were followed up. HCC cell lines and the normal hepatocyte cell line HL-7702 were cultured and the expression level of LINC00342 was measured. HepG2 cells were transfected with LINC00342 siRNA, LINC00342 overexpression plasmid, miR-19a-3p mimics and their corresponding suppressors, miR-545-5p mimics and their corresponding suppressors, and miR-203a-3p mimics and their corresponding suppressors. The proliferation, apoptosis, migration, and invasion of HepG2 cells were detected. Stably transfected HepG2 cells were inoculated into the left axilla of male BALB/c nude mice, and the volume and quality of transplanted tumors as well as the expression levels of LINC00342, miR-19a-3p, miR-545-5p, miR-203a-3p, CCND1, MDM2, and FGF2 were examined. LINC00342 played an oncogenic role in HCC and exhibited inhibitory effects on proliferation, migration, and invasion, and promoted the apoptosis of HepG2 cells. Moreover, it inhibited the growth of transplanted tumors in vivo in mice. Mechanistically, the oncogenic effect of LINC00342 was associated with the targeted regulation of the miR-19a-3p/CCND1, miR-545-5p/MDM2, and miR-203a-3p/FGF2 axes.

5.
Cancer Res Treat ; 56(1): 259-271, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37591781

ABSTRACT

PURPOSE: Pancreatic cancer (PC) is a common malignant tumor of the digestive system, and its 5-year survival rate is only 4%. N6-methyladenosine (m6A) RNA methylation is the most common post-transcriptional modification and dynamically regulates cancer development, while its role in PC treatment remains unclear. MATERIALS AND METHODS: We treated PC cells with gemcitabine and quantified the overall m6A level with m6A methylation quantification. Real-time quantitative reverse transcription polymerase chain reaction and Western blot analyses were used to detect expression changes of m6A regulators. We verified the m6A modification on the target genes through m6A-immunoprecipitation (IP), and further in vivo experiments and immunofluorescence (IF) assays were applied to verify regulation of gemcitabine on Wilms' tumor 1-associated protein (WTAP) and MYC. RESULTS: Gemcitabine inhibited the proliferation and migration of PC cells and reduced the overall level of m6A modification. Additionally, the expression of the "writer" WTAP was significantly downregulated after gemcitabine treatment. We knocked down WTAP in cells and found target gene MYC expression was significantly downregulated, m6A-IP also confirmed the m6A modification on MYC. Our experiments showed that m6A-MYC may be recognized by the "reader" IGF2BP1. In vivo experiments revealed gemcitabine inhibited the tumorigenic ability of PC cells. IF analysis also showed that gemcitabine inhibited the expression of WTAP and MYC, which displayed a significant trend of co-expression. CONCLUSION: Our study confirmed that gemcitabine interferes with WTAP protein expression in PC, reduces m6A modification on MYC and RNA stability, thereby inhibiting the downstream pathway of MYC, and inhibits the progression of PC.


Subject(s)
Gemcitabine , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Adenine , Adenosine/pharmacology , RNA Splicing Factors , Cell Cycle Proteins
6.
Food Res Int ; 172: 113234, 2023 10.
Article in English | MEDLINE | ID: mdl-37689964

ABSTRACT

The precious medicinal plant, Amomum tsao-ko Crevost et Lemarié, is the nectariferous plant from which the rare Amomum tsao-ko Crevost et Lemarié honey (ATH) is produced. Presently, chemical markers for authentication of this honey are not available due to the lack of data on its chemical composition. Here, we analyzed the volatile components and their odor activity values (OAVs), which revealed that the unique aroma was mildly flowery and fruity, accompanied by subtle sweet and fresh undertones. Since non-volatile chemicals are more reliable markers for routine authentication, we used a metabolomic approach combined with NMR-based identification to find and confirm a suitable compound to unambiguously distinguish ATH from other honeys. Isorhamnetin 3-O-neohesperidoside ranged from 3.62 to 9.38 mg/kg in ATH and was absent in the other tested honeys. In sum, the study uncovered unique chemical characteristics of ATH that will be helpful to control its quality.


Subject(s)
Amomum , Honey , Gas Chromatography-Mass Spectrometry , Chromatography, Liquid , Spices , Tandem Mass Spectrometry
8.
Ann Surg Oncol ; 30(12): 7712-7719, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37530992

ABSTRACT

BACKGROUND: The aim of this study was to develop a nomogram to predict the risk of developing clinically relevant postoperative pancreatic fistula (CR-POPF) after pancreaticoduodenectomy (PD) using preoperative clinical and imaging data. METHODS: The data of 205 patients were retrospectively analyzed, randomly divided into training (n = 125) and testing groups (n = 80). The patients' preoperative laboratory indicators, preoperative clinical baseline data, and preoperative imaging data [enhanced computed tomography (CT), enhanced magnetic resonance imaging (MRI)] were collected. Univariate analyses combined with multivariate logistic regression were used to identify the independent risk factors for CR-POPF. These factors were used to train and validate the model and to develop the risk nomogram. The area under the curve (AUC) was used to measure the predictive ability of the models. The integrated discrimination improvement index (IDI) and decision curve analysis (DCA) were used to assess the clinical feasibility of the nomogram in relation to five other models established in literature. RESULTS: CT visceral fat area (P = 0.014), the pancreatic spleen signal ratio on T1 fat-suppressed MRI sequences (P < 0.001), and CT main pancreatic duct diameter (P = 0.001) were identified as independent prognostic factors and used to develop the model. The final nomogram achieved an AUC of 0.903. The IDI and DCA showed that the nomogram outperformed the other five CR-POPF models in the training and testing cohorts. CONCLUSION: The nomogram achieved a superior predictive ability for CR-POPF following PD than other models described in literature. Clinicians can use this simple model to optimize perioperative planning according to the patient's risk of developing CR-POPF.

9.
Environ Sci Technol ; 57(31): 11442-11451, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37490655

ABSTRACT

Chlorinated paraffins (CPs) have become global pollutants and are of considerable concern as a result of their persistence and long-distance transmission in the environment and toxicity to mammals. However, their risks to pollinating insects are unknown. Honeybees are classical pollinators and sensitive indicators of environmental pollution. Herein, the effects of CPs on the gut microenvironment and underlying mechanisms were evaluated and explored using Apis mellifera L. Both short- and medium-chain CPs had significant sublethal effects on honeybees at a residue dose of 10 mg/L detected in bee products but did not significantly alter the composition or diversity of the gut microbiota. However, this concentration did induce significant immune, detoxification, and antioxidation responses and metabolic imbalances in the midgut. The mechanisms of CP toxicity in bees are complicated by the complex composition of these chemicals, but this study indicated that CPs could substantially affect intestinal physiology and metabolic homeostasis. Therefore, CPs in the environment could have long-lasting impacts on bee health. Future studies are encouraged to identify novel bioindicators of CP exposure to detect early contamination and uncover the detailed mechanisms underlying the adverse effects of CPs on living organisms, especially pollinating insects.


Subject(s)
Bees , Environmental Pollutants , Gastrointestinal Microbiome , Hydrocarbons, Chlorinated , Paraffin , Animals , Bees/physiology , Gastrointestinal Microbiome/drug effects , Hydrocarbons, Chlorinated/toxicity , Paraffin/toxicity , Stress, Physiological , Environmental Pollutants/toxicity
11.
J Gastrointest Oncol ; 14(3): 1504-1524, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37435230

ABSTRACT

Background: Hypoxia plays an important role in the development of pancreatic cancer (PCA). However, there is few research on the application of hypoxia molecules in predicting the prognosis of PCA. We aimed to establish a prognostic model based on hypoxia-related genes (HRGs) for PCA to discover new biomarkers, and to reveal the potential of this prognostic model for evaluating the tumor microenvironment (TME). Methods: Univariate Cox regression analysis was used to identify HRGs associated with overall survival (OS) of PCA samples. A hypoxia-related prognostic model was established based on least absolute shrinkage and selection operator (LASSO) regression analysis in The Cancer Genome Atlas (TCGA) cohort. The model was validated in the Gene Expression Omnibus (GEO) datasets. The Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to estimate the infiltration of immune cells. A wound healing assay and transwell invasion assay were used to explore the biological functions of target genes in PCA. Results: A total of 18 HRGs were differentially expressed between the tumor and normal pancreatic tissue, 4 (BHLHE40, ENO1, SDC4, and TGM2) of which were selected to construct a prognostic model. According to this model, patients in the high-risk group had a less favorable prognosis. Furthermore, the proportion of M0 macrophages was significantly higher in high-risk tissue-type patients, whereas naïve B cells, plasma cells, CD8+ T cells, and activated CD4+ memory T cells were significantly lower. The expression of BHLHE40 in PCA cells was significantly up-regulated under hypoxic conditions. Moreover, BHLHE40 was shown to regulate the transcription and expression of the downstream target gene TLR3. The wound healing assay and transwell invasion assay indicated that BHLHE40 mediated PCA cell migration and invasion by targeting the downstream gene TLR3. Conclusions: The hypoxia-related prognostic model established by the expression pattern of 4 HRGs can be used to predict the prognosis and assess the TME of PCA patients. Mechanically, activation of the BHLHE40/TLR3 axis is responsible for the promoted invasion and migration of PCA cells in a hypoxic environment.

12.
Food Chem ; 425: 136495, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37276665

ABSTRACT

Bee pollen is a byproduct of pollination, which is a necessary process to produce foods. However, bee pollen can induce significant food-borne allergies. We previously identified a bee pollen-derived pan-allergen in the profilin family, Bra c p. Herein, we aimed to reduce Bra c p allergenicity via protein oxidation with hydrogen peroxide and explore the changes induced. Ion-mobility mass spectrometry revealed aggregation of the oxidized product; we also found irreversible sulfonation of the free sulfhydryl group of the Bra c p Cys98 residue to a more stable cysteine derivative. A significant proportion of the α-helices in Bra c p were transformed into ß-sheets after oxidation, masking the antigenic epitopes. An immunoassay demonstrated that the IgE-binding affinity of Bra c p was decreased in vitro after oxidation. To our knowledge, this is the first report describing the application of protein oxidation to reduce the allergenicity of profilin family member in foods.


Subject(s)
Allergens , Profilins , Bees , Animals , Profilins/analysis , Pollen/chemistry , Hydrogen Peroxide/analysis , Peroxides/analysis , Plant Proteins/analysis , Cross Reactions
13.
Insect Sci ; 30(5): 1208-1228, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37279769

ABSTRACT

The phytophagous mite Tetranychus truncatus is a serious pest in East Asia but has a relatively narrower host range than the pest mite Tetranychus urticae, which can feed on over 1200 plant species. Here, we generated a high-quality chromosomal level genome of T. truncatus and compared it with that of T. urticae, with an emphasis on the genes related to detoxification and chemoreception, to explore the genomic basis underlying the evolution of host range. We also conducted population genetics analyses (in 86 females from 10 populations) and host transfer experiments (in 4 populations) to investigate transcription changes following transfer to a low-quality host (Solanum melongena, eggplant), and we established possible connections between fitness on eggplant and genes related to detoxification and chemoreception. We found that T. truncatus has fewer genes related to detoxification, transport, and chemoreception than T. urticae, with a particularly strong reduction in gustatory receptor (GR) genes. We also found widespread transcriptional variation among T. truncatus populations, which varied in fitness on eggplant. We characterized selection on detoxification-related genes through ω values and found a negative correlation between expression levels and ω values. Based on the transcription results, as well as the fitness and genetic differences among populations, we identified genes potentially involved in adaptation to eggplant in T. truncatus. Our work provides a genomic resource for this pest mite and new insights into mechanisms underlying the adaptation of herbivorous mites to host plants.

14.
Food Chem ; 424: 136457, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37247601

ABSTRACT

Honey, a natural sweetener that can be stored long-term, is prone to Maillard reactions. Maillard reaction products (MRPs), such as 5-hydroxymethylfurfural (5-HMF), α-dicarbonyl compounds (α-DCs), and advanced glycation end products (AGEs), negatively affect human health. We analyzed MRP accumulation in chaste honey over four years. In the first year, α-DCs were dominant with total contents of 509.7 mg/kg. In the second year, Amadori compounds increased, accounting for the largest percentage. Their formation at the initial stage showed inhibition of the Maillard reaction over time. AGE contents were approximately 1.00 mg/kg over four years, which is negligible compared to other foods. Increased 5-HMF was significantly correlated with storage time (p < 0.01), making it a suitable indicator of honey quality. Due to the lack of MRP risk assessments, we compared our findings with daily intake of MRPs from other foods, and the levels of MRPs in honey over four years are acceptable.


Subject(s)
Honey , Humans , Child, Preschool , Maillard Reaction , Glycation End Products, Advanced
15.
Food Res Int ; 169: 112799, 2023 07.
Article in English | MEDLINE | ID: mdl-37254383

ABSTRACT

Monofloral honeys are highly valued for their unique flavors and potential health benefits. In this study, the aromatic attributes of rare Leucosceptrum canum Smith honey (LCH) were characterized by GC-MS coupled with GC-MS/MS. Based on their odor contribution rates (OCRs), linalool (74.22%), 3-methyl-1-butanol (18.19%), benzeneacetaldehyde (1.31%) and lilac aldehyde B (2.78%) were largely responsible for the unique and complex flavor of LCH - flowery, spicy, sweet, fruity and fresh. Compared to other tested honeys, linalool (0.18 mg/kg), which has known antibacterial properties, was higher in LCH. However, it was not the main antibacterial compound in LCH, suggesting as of now unknown antibacterial compounds. This study provides the first aromatic profile of LCH, which will be useful for the authentication of LCH and for uncovering the mechanisms behind its perceived health benefits.


Subject(s)
Honey , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Honey/analysis , Tandem Mass Spectrometry , Volatile Organic Compounds/analysis
16.
Compr Rev Food Sci Food Saf ; 22(2): 1387-1417, 2023 03.
Article in English | MEDLINE | ID: mdl-36789800

ABSTRACT

α-Dicarbonyl compounds (α-DCs) are readily produced during the heating and storage of foods, mainly through the Maillard reaction, caramelization, lipid-peroxidation, and enzymatic reaction. They contribute to both the organoleptic properties (i.e., aroma, taste, and color) and deterioration of foods and are potential indicators of food quality. α-DCs are also important precursors to hazardous substances, such as acrylamide, furan, advanced lipoxidation end products, and advanced glycation end products, which are genotoxic, neurotoxic, and linked to several diseases. Recent studies have indicated that dietary α-DCs can elevate plasma α-DC levels and lead to "dicarbonyl stress." To accurately assess their health risks, quantifying α-DCs in food products is crucial. Considering their low volatility, inability to absorb ultraviolet light, and high reactivity, the analysis of α-DCs in complex food systems is a challenge. In this review, we comprehensively cover the development of scientific approaches, from extraction, enrichment, and derivatization, to sophisticated detection techniques, which are necessary for quantifying α-DCs in different foods. Exposure to α-DCs is inevitable because they exist in most foods. Recently, novel strategies for reducing α-DC levels in foods have become a hot research topic. These strategies include the use of new processing technologies, formula modification, and supplementation with α-DC scavengers (e.g., phenolic compounds). For each strategy, it is important to consider the potential mechanisms underlying the formation and removal of process contaminants. Future studies are needed to develop techniques to control α-DC formation during food processing, and standardized approaches are needed to quantify and compare α-DCs in different foods.


Subject(s)
Glycation End Products, Advanced , Maillard Reaction , Food Handling/methods , Food , Diet
17.
Insects ; 14(2)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36835728

ABSTRACT

Eriophyid mites (Eriophyidae) are strictly phytophagous and are concentrated in Europe, Eastern Asia, Southeast Asia, Western and Eastern North America, Southern India, and New Zealand. South and southwest China are hot spots for eriophyid mite species diversity and endemism. In this study, we describe two new species, Scolotosus ehretussp. nov. on Ehretia acuminata (Boraginaceae) and Neotegonotus ulmchangussp. nov. on Ulmus changii (Ulmaceae), from south and southwest China (the Oriental Region), and one new eriophyid mite, Leipothrix ventricosissp. nov. on Hosta ventricosa (Asparagaceae), from northeast China (the Palearctic Region). All three new eriophyid mite species are distributed in the temperate region of China. We further provided mitochondrial gene (cox1, 12S rRNA) and nuclear gene (18S rRNA, 28S rRNA) sequences for three new species.

18.
Mol Phylogenet Evol ; 179: 107676, 2023 02.
Article in English | MEDLINE | ID: mdl-36535519

ABSTRACT

The superfamily Eriophyoidea includes >5000 named species of very small phytophagous mites. As for many groups of phytophagous invertebrates, factors responsible for diversification of eriophyoid mites are unclear. Here, we used an inferred phylogeny of 566 putative species of eriophyoid mites based on fragments of two mitochondrial genes and two nuclear genes to examine factors associated with their massive evolutionary diversification through time. Our dated phylogeny indicates a Carboniferous origin for gymnosperm-associated Eriophyoidea with subsequent diversification involving multiple host shifts to angiosperms-first to dicots, and then to monocots or shifts back to gymnosperms-beginning in the Cretaceous period when angiosperms diverged. Speciation rates increased more rapidly in the Eriophyidae + Diptilomiopidae (mostly infesting angiosperms) than in the Phytoptidae (mostly infesting gymnosperms). Phylogenetic signal, speciation rates, dispersal and vicariance results combined with inferred topologies show that hosts played a key role in the evolution of eriophyoid mites. Speciation constrained by hosts was probably the main driver behind eriophyoid mite diversification worldwide. We demonstrate monophyly of the Eriophyoidea, whereas all three families, most subfamilies, tribes, and most genera are not monophyletic. Our time-calibrated tree provides a framework for further evolutionary studies of eriophyoid mites and their interactions with host plants as well as taxonomic revisions above the species level.


Subject(s)
Magnoliopsida , Mites , Humans , Animals , Phylogeny , Mites/genetics , Magnoliopsida/genetics , Genes, Mitochondrial , Cell Nucleus/genetics
19.
Food Chem ; 404(Pt A): 134312, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36244068

ABSTRACT

Astragalus membranaceus var. mongholicus Hsiao (Am) is a widely used traditional Chinese herbal medicine. The monofloral honey from Am plant nectar collected by honeybees (MH-Am) has potential medicinal activities. Quality control of MH-Am requires discovery of characteristic markers. In this study, calycosin and formononetin were identified as reliable chemical markers for MH-Am authentication, which were shared with its plant (P-Am), but absent in other honeys based on untargeted mass spectrometry (MS) analysis. The contents of calycosin and formononetin in MH-Am, other honeys and P-Am were determined through a targeted MS-based quantitative approach. Furthermore, free radical scavenging assays showed that calycosin functioned directly in the antioxidative activity of MH-Am. Thus, calycosin has great potential to be certified as a bioactive marker contributing to future quality control of commercial MH-Am products.


Subject(s)
Astragalus propinquus , Honey , Animals , Astragalus propinquus/chemistry , Mass Spectrometry
20.
Food Chem ; 406: 135075, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-36462363

ABSTRACT

Profilin family members are potential pan-allergens in foods, presenting public health hazards. However, studies on the allergenicity modification of profilin allergens are limited. Herein, quercetin and its glycosides (isoquercitrin and rutin) were applied to modify the allergenicity of a profilin allergen (Bra c p) from Brassica campestris bee pollen. Results showed that only quercetin can be closely covalently bound to Bra c p among the three, and the binding site was located at the Cys98 residue. After covalently conjunction, the relative content of α-helix structure in Bra c p was reduced by 40.05%, while random coil was increased by 42.89%; moreover, the Tyr and Phe residues in Bra c p were masked. These structural changes could alter the conformational antigenic epitopes of Bra c p, resulting in its allergenicity reduction. Our findings might provide a technical foundation for reducing the allergenicity of bee pollen and foods containing profilin family allergens.


Subject(s)
Allergens , Pollen , Animals , Bees , Profilins/metabolism , Quercetin/metabolism , Glycosides/metabolism , Immunoglobulin E , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...