Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Acta Cir Bras ; 32(5): 359-368, 2017 May.
Article in English | MEDLINE | ID: mdl-28591365

ABSTRACT

PURPOSE:: To evaluate the changes of caveolin-1 in lung fibroblasts in newborn Wistar rats when exposed to hyperoxic conditions, as well as lung fibroblasts cell cycle. METHODS:: One hundred newborn Wistar rats were randomly divided (50 rats/group) into experimental and control groups, exposed to hyperoxic conditions or normal air, respectively. The fraction of inspired oxygen (FiO2) in the experimental group was 90%, whereas this value was 21% in the control group. Lung fibroblasts were collected on days 3, 7, and 14 of the experiment. Caveolin-1 expression dynamics in lung fibroblasts was assayed in each group by immunofluorescence and Western blot analyses. Flow cytometry (FCM) was used to assess the proportions of lung fibroblasts at different stages of the cell cycle. RESULTS:: On day 3, no significant difference in caveolin-1 expression was observed between the hyperoxic and control groups; however, on days 7 and 14, caveolin-1 expression was significantly lower in the hyperoxic group than in the control (P<0.05). No apparent differences were observed in caveolin-1 expression in the control group at the different time points. Using FCM analysis, we showed that the proportion of lung fibroblasts in G0/G1 phase in the hyperoxic group decreased compared to that of the control group on day 7, while the proportion of S-phase cells increased (P<0.05). These differences were more significant when the groups were compared on day 14 (P<0.01). CONCLUSION:: After seven days the exposure to hyperoxic conditions, lung fibroblasts proliferated and caveolin-1 expression decreased.


Subject(s)
Caveolin 1/metabolism , Cell Proliferation , Fibroblasts/metabolism , Lung Diseases/metabolism , Lung/metabolism , Animals , Animals, Newborn , Caveolin 1/pharmacology , Cell Cycle , Cells, Cultured , Chronic Disease , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Hyperoxia , Lung/cytology , Lung/drug effects , Lung Diseases/chemically induced , Lung Diseases/classification , Models, Animal , Oxygen/pharmacology , Random Allocation , Rats, Wistar
2.
Acta cir. bras ; Acta cir. bras;32(5): 359-368, May 2017. tab, graf
Article in English | LILACS | ID: biblio-837709

ABSTRACT

Abstract Purpose: To evaluate the changes of caveolin-1 in lung fibroblasts in newborn Wistar rats when exposed to hyperoxic conditions, as well as lung fibroblasts cell cycle. Methods: One hundred newborn Wistar rats were randomly divided (50 rats/group) into experimental and control groups, exposed to hyperoxic conditions or normal air, respectively. The fraction of inspired oxygen (FiO2) in the experimental group was 90%, whereas this value was 21% in the control group. Lung fibroblasts were collected on days 3, 7, and 14 of the experiment. Caveolin-1 expression dynamics in lung fibroblasts was assayed in each group by immunofluorescence and Western blot analyses. Flow cytometry (FCM) was used to assess the proportions of lung fibroblasts at different stages of the cell cycle. Results: On day 3, no significant difference in caveolin-1 expression was observed between the hyperoxic and control groups; however, on days 7 and 14, caveolin-1 expression was significantly lower in the hyperoxic group than in the control (P<0.05). No apparent differences were observed in caveolin-1 expression in the control group at the different time points. Using FCM analysis, we showed that the proportion of lung fibroblasts in G0/G1 phase in the hyperoxic group decreased compared to that of the control group on day 7, while the proportion of S-phase cells increased (P<0.05). These differences were more significant when the groups were compared on day 14 (P<0.01). Conclusion: After seven days the exposure to hyperoxic conditions, lung fibroblasts proliferated and caveolin-1 expression decreased.


Subject(s)
Animals , Female , Cell Proliferation , Caveolin 1/metabolism , Fibroblasts/metabolism , Lung/metabolism , Lung Diseases/metabolism , Oxygen/pharmacology , Random Allocation , Cell Cycle , Cells, Cultured , Chronic Disease , Rats, Wistar , Hyperoxia , Models, Animal , Caveolin 1/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Lung/cytology , Lung/drug effects , Lung Diseases/classification , Lung Diseases/chemically induced , Animals, Newborn
3.
Acta cir. bras. ; 32(5): 359-368, May 2017. ilus, tab, graf
Article in English | VETINDEX | ID: vti-17633

ABSTRACT

Purpose: To evaluate the changes of caveolin-1 in lung fibroblasts in newborn Wistar rats when exposed to hyperoxic conditions, as well as lung fibroblasts cell cycle. Methods: One hundred newborn Wistar rats were randomly divided (50 rats/group) into experimental and control groups, exposed to hyperoxic conditions or normal air, respectively. The fraction of inspired oxygen (FiO2) in the experimental group was 90%, whereas this value was 21% in the control group. Lung fibroblasts were collected on days 3, 7, and 14 of the experiment. Caveolin-1 expression dynamics in lung fibroblasts was assayed in each group by immunofluorescence and Western blot analyses. Flow cytometry (FCM) was used to assess the proportions of lung fibroblasts at different stages of the cell cycle. Results: On day 3, no significant difference in caveolin-1 expression was observed between the hyperoxic and control groups; however, on days 7 and 14, caveolin-1 expression was significantly lower in the hyperoxic group than in the control (P 0.05). No apparent differences were observed in caveolin-1 expression in the control group at the different time points. Using FCM analysis, we showed that the proportion of lung fibroblasts in G0/G1 phase in the hyperoxic group decreased compared to that of the control group on day 7, while the proportion of S-phase cells increased (P 0.05). These differences were more significant when the groups were compared on day 14 (P 0.01). Conclusion: After seven days the exposure to hyperoxic conditions, lung fibroblasts proliferated and caveolin-1 expression decreased.(AU)


Subject(s)
Animals , Rats , Caveolin 1/administration & dosage , Fibroblasts/chemistry , Fibroblasts/cytology , Lung Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL