Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 338: 122671, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37788797

ABSTRACT

Antibiotic resistance genes (ARGs) are one of the emerging contaminants posing a great deal of hazardous risk to public health. This study employed metagenomics and deciphered the potential risk of the antibiotic resistome and their vertical transfer to ensiled whole-crop corn silage harvested from six climate zones: 1. Warm temperate-fully humid-hot summer (Cfa), 2. Arid-desert-cold arid (BWk), 3. Snow-desert-cold summer (Dwc), 4. Snow-desert-hot summer (Dwa), 5. Arid-steppe-cold arid (BSk), and 6. Equatorial-desert (Aw) based on the Köppen-Geiger climate classification in China. The findings demonstrate a high diversity of ARGs, which is related to the drug classes of tetracycline, ciprofloxacin, lincosamide, fosfomycin, and beta lactam. Resistome variations are mostly related to variations in microbial composition and fermentation characteristics of the silages from different climate zones, which are indirectly influenced by environmental conditions. The most dominating ARGs in corn silage were tetM, acrA, H-NS, lnuA, emrR, and KpnG, which is primarily hosted by Klebsiella and Lactobacilli. There were 5 high-risk ARGs (tetM, bacA, SHV-1, dfrA17, and QnrS1) in silage from different climate zones, and the tetM was the most prevalent high-risk ARG. However, throughout the ensiling process, the abundance of ARGs, and mobile ARGs were reduced. The resistome contamination in silage from Tibet (Dwc) with high altitude and harsh environment was relatively low due to the low variety and abundance of ARGs, the low abundance of mobile ARGs and high-risk ARGs. In addition, most of the bacteria responsible for the silage fermentation were also found to be the hosts to the ARGs, although their abundance decreased after 90 d of silage fermentation. Hence, we alert the existence of ARGs-related biosafety risk in silages and call for more attention to the silage ARGs, their hosts, and mobile genetic elements in order to curtail their possible risk to public health.


Subject(s)
Anti-Bacterial Agents , Zea mays , Anti-Bacterial Agents/pharmacology , Silage/analysis , Bacteria/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial
2.
Microbiol Spectr ; 11(3): e0070523, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37166312

ABSTRACT

To investigate community synergy of lactic acid bacteria (LAB) and cleaner fermentation of oat silage, oat silages were prepared with or without (control) commercial LAB inoculants LI1 (containing Lactiplantibacillus plantarum, Lentilactobacillus buchneri, Lacticaseibacillus paracasei, and Pediococcus acidilactici) and LI2 (containing Lactiplantibacillus plantarum and Lentilactobacillus buchneri). The microbial community, LAB synergy, and cleaner fermentation were analyzed at 1, 3, 6, 15, 35, and 90 days of ensiling. The LAB inoculant improved fermentation quality, with significantly (P < 0.05) lower pH, ammonia nitrogen content, and gas production and higher lactic acid and acetic acid contents than those of the control. Enterobacteriaceae was the main bacterial community in early stage of fermentation, which utilizes sugar to produce CO2 gas, causing dry matter (DM) and energy loss. As fermentation progressed, the microbial diversity decreased, and the microbial community shifted from Gram-negative to Gram-positive bacteria. The inoculation of multispecies LAB displayed community synergy; Pediococcus acidilactici formed a dominant community in the early stage of fermentation, which produced an acid and anaerobic environment for the subsequent growth of Lentilactobacillus and Lacticaseibacillus species, thus forming a LAB-dominated microbial community. The predicted functional profile indicated that the silage inoculated with LI1 enhanced the carbohydrate metabolism pathway but inhibited the amino acid metabolism pathway, which played a role in promoting faster lactic acid production, reducing the decomposition of protein to ammonia nitrogen, and improving the fermentation quality of silage. Therefore, oat silage can be processed to high-quality and cleaner fermented feed by using an LAB inoculant, and LI1 showed better efficiency than LI2. IMPORTANCE Oat natural silage is rich in Enterobacteriaceae, increasing gas production and fermentation loss. Lactic acid bacteria interact synergistically to form a dominant community during ensiling. Pediococci grow vigorously in the early stage of fermentation and create an anaerobic environment. Lactobacilli inhibit the harmful microorganisms and result in cleaner fermentation of oat silage.


Subject(s)
Agricultural Inoculants , Lactobacillales , Lactobacillales/metabolism , Silage/analysis , Silage/microbiology , Agricultural Inoculants/metabolism , Avena/metabolism , Fermentation , Ammonia , Lactic Acid/metabolism , Enterobacteriaceae/metabolism , Nitrogen
3.
Front Microbiol ; 14: 1177031, 2023.
Article in English | MEDLINE | ID: mdl-37138619

ABSTRACT

This study aimed to evaluate the effects of Bacillus subtilis or Lentilactobacillus buchneri on the fermentation quality, aerobic stability, and bacterial and fungal communities of whole plant corn silage during aerobic exposure. Whole plant corn was harvested at the wax maturity stage, which chopped to a length of approximately 1 cm, and treated with the following: distilled sterile water control, 2.0 × 105 CFU/g of Lentilactobacillus buchneri (LB) or 2.0 × 105 CFU/g of Bacillus subtilis (BS) for 42 days silage. Then, the samples were exposed to air (23-28°C) after opening and sampled at 0, 18 and 60 h, to investigate fermentation quality, bacterial and fungal communities, and aerobic stability. Inoculation with LB or BS increased the pH value, acetic acid, and ammonia nitrogen content of silage (P < 0.05), but it was still far below the threshold of inferior silage, the yield of ethanol was reduced (P < 0.05), and satisfactory fermentation quality was achieved. With the extension of the aerobic exposure time, inoculation with LB or BS prolonged the aerobic stabilization time of silage, attenuated the trend of pH increase during aerobic exposure, and increased the residues of lactic acid and acetic acid. The bacterial and fungal alpha diversity indices gradually declined, and the relative abundance of Basidiomycota and Kazachstania gradually increased. The relative abundance of Weissella and unclassified_f_Enterobacteria was higher and the relative abundance of Kazachstania was lower after inoculation with BS compared to the CK group. According to the correlation analysis, Bacillus and Kazachstania are bacteria and fungi that are more closely related to aerobic spoilage and inoculation with LB or BS could inhibit spoilage. The FUNGuild predictive analysis indicated that the higher relative abundance of fungal parasite-undefined saprotroph in the LB or BS groups at AS2, may account for its good aerobic stability. In conclusion, silage inoculated with LB or BS had better fermentation quality and improved aerobic stability by effectively inhibiting the microorganisms that induce aerobic spoilage.

4.
Front Microbiol ; 14: 1083620, 2023.
Article in English | MEDLINE | ID: mdl-36970661

ABSTRACT

Alfalfa is harvested two or three times a year in central and western Inner Mongolia, China. However, the variations in bacterial communities as affected by wilting and ensiling, and the ensiling characteristics of alfalfa among the different cuttings, are not fully understood. To enable a more complete evaluation, alfalfa was harvested three times a year. At each time of cutting, alfalfa was harvested at early bloom, wilted for 6 h, and then ensiled in polyethylene bags for 60 days. The bacterial communities and nutritional components of fresh alfalfa(F), wilted alfalfa(W) and ensiled alfalfa(S), and the fermentation quality and functional profile of bacterial communities of the three cuttings alfalfa silage, were then analyzed. Functional characteristics of silage bacterial communities were evaluated according to the Kyoto Encyclopedia of Genes and Genomes. The results showed that all nutritional components, fermentation quality, bacterial communities, carbohydrate, amino acid metabolism and key enzymes of bacterial communities were influenced by cutting time. The species richness of F increased from the first cutting to the third cutting; it was not changed by wilting, but was decreased by ensiling. At phylum level, Proteobacteria were more predominant than other bacteria, followed by Firmicutes (0.063-21.39%) in F and W in the first and second cuttings. Firmicutes (96.66-99.79%) were more predominant than other bacteria, followed by Proteobacteria (0.13-3.19%) in S in the first and second cuttings. Proteobacteria, however, predominated over all other bacteria in F, W, or S in the third cutting. The third-cutting silage showed the highest levels of dry matter, pH and butyric acid (p < 0.05). Higher levels of pH and butyric acid were positively correlated with the most predominant genus in silage, and with Rosenbergiella and Pantoea. The third-cutting silage had the lowest fermentation quality as Proteobacteria were more predominant. This suggested that, compared with the first and second cutting, the third cutting is more likely to result in poorly preserved silage in the region studied.

5.
Front Microbiol ; 13: 1013913, 2022.
Article in English | MEDLINE | ID: mdl-36452921

ABSTRACT

Sweet sorghum is an important forage in arid and semi-arid climatic regions. This study aimed to reveal the fermentation weight loss (FWL), fermentation quality, and bacterial community of ensiling of sweet sorghum with lactic acid bacteria LAB; (Lactiplantibacillus plantarum and Lentilactobacillus buchneri) at different silo densities. For this study, sweet sorghum was harvested at the first spikelet of inflorescence stage and ensiled without or with LAB (CK or L) in polyethylene laboratory-scale silos (diameter, 20 cm; height, 30 cm) at densities of 650 (CK_650 and L_650), 700 (CK_700 and L_700), and 750 kg/m3 (CK_750 and L_750), respectively. The FWL, fermentation quality, microbial counts, and bacterial community of the silage were assessed after 100 days of ensiling. L_750 had a lower FWL than CK_650, _700, and _750 after 100 days of ensiling (P < 0.005), and the FWL was affected by silo density and inoculating LAB (P < 0.005). All silages had low pH (<4.0) and ammonia nitrogen content (<50 g/kg total nitrogen) and did not contain propionic and butyric acids; moreover, inoculating LAB increased lactic and acetic acids (P < 0.005). Bacterial communities in inoculated and uninoculated silages were clustered together, respectively, and clearly separated from each other. The total abundance of Lactiplantibacillus and Lentilactobacillus in fresh forage was <1%. Lactiplantibacillus had the highest abundance in all silages (from 71.39 to 93.27%), followed by Lentilactobacillus (from 3.59 to 27.63%). Inoculating LAB increased the abundance of Lentilactobacillus in each silo density (P < 0.005) and decreased Lactiplantibacillus in the silage in densities of 700 and 750 kg/m3 (P < 0.005); moreover, increasing silo density decreased Lactiplantibacillus abundance and increased Lentilactobacillus abundance in inoculated silages (P < 0.005). Overall, sweet sorghum silage showed satisfactory fermentation quality, with a density of no <650 kg/m3, and inoculating LAB improved fermentation quality and reduced FWL. Lactiplantibacillus and Lentilactobacillus presented as minor taxa in fresh sweet sorghum and dominated the bacterial community of all silages. Inoculating LAB was the main factor affecting the bacterial community of sweet sorghum silage. Moreover, inoculating LAB and increasing silo density can contribute to the decreasing Lactiplantibacillus abundance and increasing Lentilactobacillus abundance.

6.
Front Microbiol ; 13: 959018, 2022.
Article in English | MEDLINE | ID: mdl-36329848

ABSTRACT

Leymus chinensis is a major forage resource for herbivores on typical steppe and meadow steppes in Northern China. This study aimed to reveal the fermentation quality, bacterial community, and aerobic stability of L. chinensis silage treated with lactic acid bacteria or/and water after long-term storage. Leymus chinensis was harvested at the heading stage and ensiled with lactic acid bacteria [LAB, 2.00 ml/kg fresh weight (FW) of LAB, L], water (100 ml/kg FW of distilled water, W), or a combination of both [2.00 ml/kg fresh weight (FW) of LAB and 100 ml/kg FW of distilled water, LW] in polyethylene laboratory-scale silos (diameter, 20 cm; height, 30 cm) at a density of 650 kg/m3. As a control silage (CK), untreated L. chinensis silage was also assessed. The samples were taken at 0 day of opening after 300 days of ensiling (CK_0d, L_0d, W_0d, and LW_0d) and at 10 days of opening (CK_10d, L_10d, W_10d, and LW_10d). The fermentation quality, microbial counts, bacterial community, and aerobic stability of the silage were assessed. The CK_0d contained higher pH and aerobic bacteria count, and lower LA and BC concentrations than L_0d, W_0d, and LW_0d (p < 0.05), and the LAB and yeasts were only detected in CK at 0 day of opening. Lactobacillus had the most abundance among bacterial genera in all silages at 0 day of opening. Just CK had 2°C above the ambient temperature during aerobic exposure (at 224 h). During aerobic exposure, the pH and microbial counts in CK increased (p < 0.05), and Lactobacillus in L and LW had decreasing abundance (p < 0.05). The CK_10d had higher pH and microbial counts, and lower lactic acid and buffering capacity than L_10d, W_10d, and LW_10d (p < 0.05). At 10 days of opening, the coliforms and yeasts were just detected in CK, and Lactobacillus also had the most abundance among bacterial genera in all silages at 10 days of opening. Overall, inoculating LAB and adding water improved the fermentation quality and the aerobic exposure of L. chinensis silage after long-term storage. The activities of coliforms and yeasts during aerobic exposure contributed to the aerobic deterioration of L. chinensis silage without any treating. Lactobacillus dominated the bacterial communities of all silage at 0 and 10 days of opening. During aerobic exposure, the abundance of Lactobacillus reduced in L. chinensis silage treated with LAB or water.

7.
Front Microbiol ; 13: 1052837, 2022.
Article in English | MEDLINE | ID: mdl-36386706

ABSTRACT

This study aims to investigate the effects of adding Lactobacillus buchneri (LB), Lactobacillus brevis (LBR) and Bacillus subtilis (BS) on the fermentation quality, nitrate degradation and bacterial community of sorghum-sudangrass silage. The results showed that the addition of LB significantly increased the pH and acetic acid content (p < 0.05), but high-quality silage was obtained. The addition of LBR and BS improved the fermentation quality of sorghum-sudangrass silage. The use of additives reduced the nitrate content in sorghum-sudangrass silage. The LB group increased the release of N2O at 3-7 days of ensiling (p < 0.05), and LBR and BS increased the release of N2O at 1-40 days of ensiling (p < 0.05). On the first day of ensiling, all silages were dominated by Weisslla, over 3 days of ensiling all silages were dominated by Lactobacillus. Acinetobacter, Serratia, Aquabacterium, and unclassified_f_enterobacteriaceae showed significant negative correlations with nitrate degradation during sorghum-sudangrass ensiling (p < 0.05). The BS and LBR groups increased the metabolic abundance of denitrification, dissimilatory nitrate reduction, and assimilatory nitrate reduction (p < 0.05). Overall, the additive ensures the fermentation quality of sorghum-sudangrass silage and promotes the degradation of nitrate by altering the bacterial community.

8.
Front Microbiol ; 13: 804429, 2022.
Article in English | MEDLINE | ID: mdl-35711776

ABSTRACT

This study aimed to assess the effects of microbial inoculants and growth stage on fermentation quality, microbial community, and in vitro degradability of Caragana silage from different varieties. Caragana intermedia (CI) and Caragana korshinskii (CK) harvested at the budding (BU) and blooming (BL) stages were used as raw materials to prepare silage, respectively. The silages at each growth stage were treated for ensiling alone (control), with 5% rice bran (RB), a combination of RB with commercial Lactobacillus plantarum (RB + LP), and a combination of RB with a selected strain Lactobacillus plantarum L694 (RB + L694). The results showed that the crude protein (CP) content of CI was higher than that of CK, and delay in harvest resulted in greater CP content in Caragana at BL stage. After 60 days of fermentation, the concentrations of lactic acid (LA) in the RB + L694 treatments were higher than those in control treatments (p < 0.05), while the pH, concentrations of NH3-N, neutral detergent fiber with the addition of α-amylase (aNDF) were lower than those in control treatments (p < 0.05). RB + L694 treatments could decrease acid detergent fiber (ADF) content except in CIBL. In CK silages, adding RB + L694 could reduce bacterial diversity and richness (p < 0.05). Compared with the control, RB + L694 treatment contained higher Lactobacillus and Enterobacter (p < 0.05). In vitro NDF and DM degradability (IVNDFD and IVDMD) was mostly affected by growth period, and additive RB + l694 treatment had higher IVDMD and lower IVNDFD than other treatments (p < 0.05). Consequently, the varieties, growth stages, and additives could influence the fermentation process, while the blooming stage should be selected in both Caragana. Furthermore, the results showed that RB and L. plantarum could exert a positive effect on fermentation quality of Caragana silage by shifting bacterial community composition, and RB + L694 treatments outperformed other additives.

9.
Front Microbiol ; 13: 836899, 2022.
Article in English | MEDLINE | ID: mdl-35531295

ABSTRACT

The aim of this study was to determine the effects of six common commercial lactic acid bacteria (LAB) additives [A1, Lactobacillus plantarum, L. buchneri, and Enterococcus faecalis; A2, L. plantarum and L. casei; A3, L. plantarum and L. buchneri; A4, L. plantarum, L. buchneri, L. casei, and Pediococcus acidilactici; A5, L. plantarum (producing feruloyl esterase); and A6, L. buchneri, P. acidilactici, ß-glucanase, and xylanase] on the bacterial community and fermentation quality of alfalfa silage. Alfalfa was harvested at the squaring stage, wilted in the field for 24 h, and ensiled without any additives (Control) or with A1, A2, A3, A4, A5, or A6. Microbial counts, bacterial community, fermentation parameters, and nutritional composition were determined after ensiling for 90 days. The total abundance of LAB genera on alfalfa pre-ensiling was 0.38% in bacterial community. The abundances of Lactobacillus, Enterococcus, and Pediococcus in the Control silage were 42.18, 40.18, and 8.09% of abundance, respectively. The abundances of Lactobacillus in A1-, A2-, A3-, A4-, and A5-treatments were 89.32, 92.93, 92.87, 81.12, and 80.44%, respectively. The abundances of Pediococcus and Lactobacillus in A6-treatment were 70.14 and 24.86%, respectively. Compared with Control silage, LAB-treated silage had lower pH and less ammonia nitrogen and water-soluble carbohydrates concentrations (p < 0.05). Further, the A5- and A6-treatments contained lower neutral detergent fiber, acid detergent fiber, and hemicellulose than other treatments (p < 0.05). Overall, LAB genera were presented as minor taxa in alfalfa pre-ensiling and as dominant taxa in alfalfa silage. Adding LAB additives improved the fermentation quality and altered the bacterial community of alfalfa silage. The main bacterial genera in Control silage were Lactobacillus, Enterococcus, and Pediococcus. Lactobacillus dominated the bacterial communities of A1-, A2-, A3-, A4-, and A5-treatments, while Pediococcus and Lactobacillus were dominant bacterial genera in A6-treatment. Inoculating A5 and A6 degraded the fiber in alfalfa silage. It is necessary to ensile alfalfa with LAB inoculants.

10.
Animals (Basel) ; 12(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35405821

ABSTRACT

This study evaluated the effects of hydrolysable tannin (HT) and condensed tannin (CT) on the bacterial community, fermentation quality, and proteolysis of alfalfa silage. Alfalfa was wilted to a dry matter (DM) of 35% fresh weight and ensiled with or without 4% HT or 4% CT. The application rates of tannins were based on fresh weight, and each treatment was ensiled in triplicate. After 60 d of fermentation, the CT-treated group had lower concentrations of ammonia nitrogen (NH3-N) and free amino acid nitrogen (AA-N), but greater lactic acid concentration, than those in the control and HT-treated silage (p < 0.05). Compared to the control group, the application of tannins increased the abundance of Pseudomonas (negatively correlated with aminopeptidases activity), and decreased the abundance of Pediococcus­which was positively correlated with aminopeptidases activity­and the concentrations of non-protein nitrogen (NPN), NH3-N, and AA-N. The application of HT decreased the abundance of Lactobacillus and increased the abundances of Enterococcus, while the opposite results were observed in the CT-treated group. The application of HT and CT reduced the proteolysis in treated silages, but the two were different in terms of their mechanism and their effects on the bacterial communities of the alfalfa silage.

11.
Front Microbiol ; 13: 828320, 2022.
Article in English | MEDLINE | ID: mdl-35250945

ABSTRACT

This study aimed to evaluate the fermentation quality, bacterial community, and nitrate content of sorghum-sudangrass silage with two ensiling densities [550 kg fresh weight (FW)/m3 (low density, LD) and 650 kg FW/m3 (high density, HD)] stored at two temperatures [10°C (low temperature, LT) and 25°C (normal temperature, NT)] for 60 days. The fermentation parameters, microbial counts, bacterial community, nutritional composition, and nitrate and nitrite levels were assessed. The pH and ammonia nitrogen (N) in all silages were below 4.0 and 80 g/kg total N, respectively. Compared with LT treatments, NT treatments had lower pH and lactic acid (LA) bacteria and yeasts counts and contained higher LA and LA/acetic acid (LA/AA) (p < 0.05). The LT-LD contained more ammonia-N than LT-HD (p < 0.05) and had higher nitrate and lower nitrate degradation than other treatments (p < 0.05). Lactobacillus was the most dominant genus with all treatments (57.2-66.9%). The LA, LA/AA, and abundances of Pantoea, Pseudomonas, and Enterobacter in the silage negatively correlated with nitrate concentration and positively correlated with nitrate degradation (p < 0.05). Moreover, pH and ammonia-N were positively correlated with nitrate concentration and negatively correlated with nitrate degradation (p < 0.05). Overall, all silage had satisfactory fermentation quality, and the silage with HD and NT had better fermentation quality and higher nitrate degradation. The bacterial communities in all silages were dominated by Lactobacillus. The nitrate degradation during the fermentation process might be related to the fermentation quality and the activity of Pantoea, Pseudomonas, and Enterobacter in silage.

12.
Front Microbiol ; 12: 717120, 2021.
Article in English | MEDLINE | ID: mdl-34803939

ABSTRACT

This study aimed to reveal the bacterial community and fermentation quality of Leymus chinensis silage during the fermentation process. L. chinensis was harvested at the heading stage, and ensiled with lactic acid bacteria (LAB, L), water (W), or a combination of both (LW) in vacuum-sealed plastic bags. As a control silage, untreated L. chinensis silage was also assessed. The samples were taken at 0, 5, 15, 35, and 60 days after ensiling. The bacterial community structure was assessed by plate cultivation and Illumina sequencing, and the fermentation parameters were also analyzed. Fresh L. chinensis contained low moisture (509 g/kg) and LAB (3.64 log colony-forming units/g fresh weight). Control silage displayed higher pH and lower lactic acid (LA) than other treatments during ensilage (p < 0.05); moreover, LW-treatment had lower pH from 5 to 35 days and greater LA at 5 days than L- and W-treatments (p < 0.05). During the fermentation process, Lactobacillus in L- and LW-treatments was the most dominant bacterial genus (>97%), had higher abundance than that in control silage and W-treatment (p < 0.05), and correlated negatively with other main genera and pH, and positively with LA and acetic acid (p < 0.05). Moreover, Lactobacillus had considerable abundance in W-treatment from 5 to 15 days (81.38-85.86%). Enterobacteriaceae had the most abundance among bacteria in control silage during ensiling (49.31-69.34%), and in W-treatment from 35 to 60 days (47.49-54.15%). The L-, W-, and LW-treatments displayed the aggregated bacterial community at 5 and 15 days, with W-treatment diverging from L- and LW-treatments at 35 and 60 days. Overall, the low moisture and/or insufficient LAB in fresh L. chinensis led to Enterobacteriaceae dominating bacterial community and contributing to the high pH and low LA in control silage during the fermentation process. Applying L, W, or LW contributed to Lactobacillus succession, LA production, and pH reduction during early stage of fermentation; moreover, treating with L and LW displayed more efficiency. Lactobacillus dominated the entire ensilage process in L- and LW-treatments and the early stage of fermentation in W-treatment, and contributed to the satisfactory fermentation quality of L. chinensis silage. The L- and LW-treatments displayed a similar pattern of bacterial succession during ensiling.

13.
Front Microbiol ; 12: 663895, 2021.
Article in English | MEDLINE | ID: mdl-34211442

ABSTRACT

The study was aimed to investigate the effect of moisture content on microbial communities, metabolites, fermentation quality, and aerobic stability during aerobic exposure in whole-plant corn silages preserved long time to improve the quality and aerobic stability of the silage during feed-out. Corn plants with two different moisture levels (high-moisture content, 680 g/kg; low-moisture content, 620 g/kg) were harvested at one-third and two-thirds milk-line stages, respectively, ensiled in laboratory-scale silos, and then sampled at 350 day after ensiling and at 2 and 5 day after opening to investigate bacterial and fungal communities, metabolites, and aerobic stability. High-moisture content increased aerobic stability and pH and decreased lactic acid and microbial counts in silages (P < 0.05). During aerobic exposure, the low-moisture silages had higher pH and lactic acid bacterial count and lower lactic acid than the high-moisture silages (P < 0.05); Acinetobacter sp. was the most main bacterial species in the silages; Candida glabrata and unclassified Candida had an increasing abundance and negatively correlation with aerobic stability of high-moisture silages (P < 0.05), while C. glabrata, Candida xylopsoci, unclassified Saccharomycetaceae, and unclassified Saccharomycetales negative correlated with aerobic stability of low-moisture silages (P < 0.05) with a rising Saccharomycetaceae; the silages had a reducing concentration of total metabolites (P < 0.05). Moreover, the high-moisture silages contained greater total metabolites, saturated fatty acids (palmitic and stearic acid), essential fatty acids (linoleic acid), essential amino acids (phenylalanine), and non-essential amino acids (alanine, beta-alanine, and asparagine) than the low-moisture silages at 5 day of opening (P < 0.05). Thus, the high-moisture content improved the aerobic stability. Acinetobacter sp. and Candida sp. dominated the bacterial and fungal communities, respectively; Candida sp. resulted in the aerobic deterioration in high-moisture silages, while the combined activities of Candida sp. and Saccharomycetaceae sp. caused the aerobic deterioration in low-moisture silages. The greater aerobic stability contributed to preserve the palmitic acid, stearic acid, linoleic acid, phenylalanine, alanine, beta-alanine, and asparagine during aerobic exposure.

14.
Front Microbiol ; 12: 655095, 2021.
Article in English | MEDLINE | ID: mdl-33841382

ABSTRACT

The present study was aimed at investigating the bacterial community in lactic acid bacteria (LAB) suspensions prepared from whole-plant corn silage (LAB suspension-CS) and Elymus sibiricus silage (LAB suspension-ES) and the bacterial community succession of whole-plant corn silages inoculated with LAB suspension-CS or LAB suspension-ES during initial aerobic phase, intense fermentation phase, and stable phase. The LAB suspensions were cultured in sterile Man, Rogosa, Sharpe broth at 37°C for 24 h and used as inoculants for ensiling. The chopped whole-plant corn was treated with distilled water (CK), LAB suspension-CS (CSL), or LAB suspension-ES (ESL) and then ensiled in vacuum-sealed plastic bags containing 500 g of fresh forage. Silages were sampled at 0 h, anaerobic state (A), 3 h, 5 h, 10 h, 24 h, 2 days, 3 days, 10 days, 30 days, and 60 days of ensiling with four replicates for each treatment. The results showed that Lactobacillus, Weissella, and Lachnoclostridium_5 dominated the bacterial community in LAB suspension-CS; Lactobacillus was the most predominant bacterial genus in LAB suspension-ES. During the initial aerobic phase (from 0 h to A) of whole-plant corn silage, the pH and the abundances of Pantoea, Klebsiella, Rahnella, Erwinia, and Serratia increased. During the intense fermentation phase (from A to 3 days), the pH decreased rapidly, and the microbial counts increased exponentially; the most predominant bacterial genus shifted from Pantoea to Weissella, and then to Lactobacillus; inoculating LAB suspensions promoted the bacterial succession and the fermentation process, and LAB suspension-CS was more effective than LAB suspension-ES. During the stable phase (from 3 to 60 days), the pH and the microbial counts decreased, and Lactobacillus dominated the bacterial community with a little decrease. The results also confirmed the existence of LAB fermentation relay during fermentation process, which was reflected by Weissella, Lactococcus, and Leuconostoc in the first 5 h; Weissella, Lactococcus, Leuconostoc, Lactobacillus, and Pediococcus between 5 and 24 h; and Lactobacillus from 24 h to 60 days.

15.
Anim Sci J ; 89(2): 359-366, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29024312

ABSTRACT

A feeding experiment was carried out to determine the effects of different proportions of alfalfa hay and maize stover on the growth performance and carcass characteristics of fattening lambs. Forty-two healthy 3.5-month-old male Small-tail Han lambs of 23.89 ± 0.38 kg body mass were assigned to seven groups, which were fed mixed diets composed of maize stover and alfalfa hay containing 0%, 30%, 40%, 50%, 60%, 70% or 100% maize stover on a dry matter (DM) basis. Each lamb received 1.5 kg DM of forage mixture three times daily and supplementary concentrate (0.5 kg corn per lamb per day) for 60 days. Compared with the control forage diet of maize stover only, forage intake rate and forage conversion rate on the 40% maize stover/60% alfalfa hay mixture were 30% and 5% higher, respectively. Body weight, dressing percentage and net income were 6.7 kg, 8% and 94.37 Yuan higher per lamb, respectively. Thus, feeding lambs with a forage mixture of maize stover and alfalfa hay in a ratio of 40:60 optimized the production performance, slaughter performance, and the income derived from lambs.


Subject(s)
Animal Feed/economics , Diet/economics , Diet/veterinary , Meat/economics , Medicago sativa , Sheep/growth & development , Zea mays , Animals , Body Weight , Male
16.
Anim Sci J ; 88(12): 1963-1969, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28741730

ABSTRACT

This study aimed to investigate the fermentation quality and nutritive value of total mixed ration (TMR) silages based on desert wormwood (DW) combined with early stage corn (ESC) as forage and determine an optimum formula. Desert wormwood and ESC were harvested, chopped, and mixed with other ingredients according to a formula, packed into laboratory silos at densities of 500-550 g/L, and stored in the dark for 60 days. The DW proportions in the forage of TMR were 1, 0.75, 0.50, 0.25 and 0, based on fresh weight. As the proportion of DW decreased, the pH also decreased (P < 0.05), while lactic acid, lactic acid/acetic acid, crude protein, starch, and the in vitro digestibility of dry matter and neutral detergent fiber increased (P < 0.05). Ammonia nitrogen/total nitrogen in the TMR silages with DW proportions of 0.75, 0.25 and 0 in the forage was more than 10%. These results indicated that the quality of the TMR silage containing DW alone as forage was poor, TMR silages containing DW proportions of 0.75 and 0.25, and ESC alone, in the forage were not well preserved. The optimum TMR silage formula contained a DW proportion of 0.5 in the forage.


Subject(s)
Artemisia , Fermentation , Nutritive Value , Silage , Zea mays , Acetates/analysis , Ammonia/analysis , Hydrogen-Ion Concentration , Lactic Acid/analysis , Nitrogen/analysis , Proteins/analysis , Silage/analysis , Starch/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...