Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139447

ABSTRACT

DNA mismatch repair (MMR) improves replication accuracy by up to three orders of magnitude. The MutS protein in E. coli or its eukaryotic homolog, the MutSα (Msh2-Msh6) complex, recognizes base mismatches and initiates the mismatch repair mechanism. Msh6 is an essential protein for assembling the heterodimeric complex. However, the function of the Msh6 subunit remains elusive. Tetrahymena undergoes multiple DNA replication and nuclear division processes, including mitosis, amitosis, and meiosis. Here, we found that Msh6Tt localized in the macronucleus (MAC) and the micronucleus (MIC) during the vegetative growth stage and starvation. During the conjugation stage, Msh6Tt only localized in MICs and newly developing MACs. MSH6Tt knockout led to aberrant nuclear division during vegetative growth. The MSH6TtKO mutants were resistant to treatment with the DNA alkylating agent methyl methanesulfonate (MMS) compared to wild type cells. MSH6Tt knockout affected micronuclear meiosis and gametogenesis during the conjugation stage. Furthermore, Msh6Tt interacted with Msh2Tt and MMR-independent factors. Downregulation of MSH2Tt expression affected the stability of Msh6Tt. In addition, MSH6Tt knockout led to the upregulated expression of several MSH6Tt homologs at different developmental stages. Msh6Tt is involved in macronuclear amitosis, micronuclear mitosis, micronuclear meiosis, and gametogenesis in Tetrahymena.


Subject(s)
DNA Mismatch Repair , Tetrahymena thermophila , Tetrahymena thermophila/genetics , Tetrahymena thermophila/metabolism , MutS Homolog 2 Protein/genetics , Escherichia coli/metabolism , DNA-Binding Proteins/metabolism , Meiosis , Gametogenesis/genetics
2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37445734

ABSTRACT

Mismatch repair (MMR) is a conserved mechanism that is primarily responsible for the repair of DNA mismatches during DNA replication. Msh2 forms MutS heterodimer complexes that initiate the MMR in eukaryotes. The function of Msh2 is less clear under different chromatin structures. Tetrahymena thermophila contains a transcriptionally active macronucleus (MAC) and a transcriptionally silent micronucleus (MIC) in the same cytoplasm. Msh2 is localized in the MAC and MIC during vegetative growth. Msh2 is localized in the perinuclear region around the MIC and forms a spindle-like structure as the MIC divides. During the early conjugation stage, Msh2 is localized in the MIC and disappears from the parental MAC. Msh2 is localized in the new MAC and new MIC during the late conjugation stage. Msh2 also forms a spindle-like structure with a meiotic MIC and mitotic gametic nucleus. MSH2 knockdown inhibits the division of MAC and MIC during vegetative growth and affects cellular proliferation. MSH2 knockdown mutants are sensitive to cisplatin treatment. MSH2 knockdown also affects micronuclear meiosis and gametogenesis during sexual development. Furthermore, Msh2 interacts with MMR-dependent and MMR-independent factors. Therefore, Msh2 is necessary for macronuclear stability, as well as micronuclear mitosis and meiosis in Tetrahymena.


Subject(s)
Tetrahymena thermophila , Tetrahymena thermophila/genetics , Tetrahymena thermophila/metabolism , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , DNA Mismatch Repair , Cell Nucleus/metabolism , Macronucleus/genetics , Macronucleus/metabolism
3.
Foods ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36900578

ABSTRACT

In the present study, the immuno-enhancing effect of Eucommia ulmoides leaf polysaccharide (ELP) was investigated in immunosuppressed mice induced by cyclophosphamide (CTX). To evaluate the immune enhancement mechanism of ELP, the immunoregulation effect of ELP was evaluated in vitro and in vivo. ELP is primarily composed of arabinose (26.61%), galacturonic acid (25.1%), galactose (19.35%), rhamnose (16.13%), and a small amount of glucose (12.9%). At 1000~5000 µg·mL-1, ELP could significantly enhance the proliferation and the phagocytosis of macrophages in vitro. Additionally, ELP could protect immune organs, reduce pathological damage, and reverse the decrease in the hematological indices. Moreover, ELP significantly increased the phagocytic index, enhanced the ear swelling response, augmented the production of inflammatory cytokines, and markedly up-regulated the expression of IL-1ß, IL-6, and TNF-α mRNA levels. Furthermore, ELP improved phosphorylated p38, ERK1/2, and JNK levels, suggesting that MAPKs might be involved in immunomodulatory effects. The results provide a theoretical foundation for exploring the immune modulation function of ELP as a functional food.

4.
J Clin Med ; 12(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36902554

ABSTRACT

PURPOSE: To investigate the potential role of gut microbiota in obesity-induced insulin resistance (IR). METHODS: Four-week-old male C57BL/6 wild-type mice (n = 6) and whole-body SH2 domain-containing adaptor protein (LNK)-deficient in C57BL/6 genetic backgrounds mice (n = 7) were fed with a high-fat diet (HFD, 60% calories from fat) for 16 weeks. The gut microbiota of 13 mice feces samples was analyzed by using a 16 s rRNA sequencing analysis. RESULTS: The structure and composition of the gut microbiota community of WT mice were significantly different from those in the LNK-/- group. The abundance of the lipopolysaccharide (LPS)-producing genus Proteobacteria was increased in WT mice, while some short-chain fatty acid (SCFA)-producing genera in WT groups were significantly lower than in LNK-/- groups (p < 0.05). CONCLUSIONS: The structure and composition of the intestinal microbiota community of obese WT mice were significantly different from those in the LNK-/- group. The abnormality of the gut microbial structure and composition might interfere with glucolipid metabolism and exacerbate obesity-induced IR by increasing LPS-producing genera while reducing SCFA-producing probiotics.

5.
Front Neurosci ; 16: 860280, 2022.
Article in English | MEDLINE | ID: mdl-35585921

ABSTRACT

Background: Multiple sclerosis is a chronic demyelinating disease of uncertain etiology. Traditional treatment methods produce more adverse effects. Epidemiological and clinical treatment findings showed that unknown environmental factors contribute to the etiology of MS and that diet is a commonly assumed factor. Despite the huge interest in diet expressed by people with MS and the potential role diet plays in MS, very little data is available on the role of diet in MS pathogenesis and MS course, in particular, studies on fats and MS. The oil of Acer truncatum is potential as a resource to be exploited in the treatment of some neurodegenerative diseases. Objective: Here, we investigated the underlying influences of Acer truncatum oil on the stimulation of remyelination in a cuprizone mouse model of demyelination. Methods: Cuprizone (0.2% in chow) was used to establish a mouse model of demyelination. Acer truncatum oil was administrated to mice during remyelination. Following techniques were used: behavioral test, histochemistry, fluorescent immunohistochemistry, transmission electron microscope. Results: Mice exposed to cuprizone for 6 weeks showed schizophrenia-like behavioral changes, the increased exploration of the center in the open field test (OFT), increased entries into the open arms of the elevated plus-maze, as well as demyelination in the corpus callosum. After cuprizone withdrawal, the diet therapy was initiated with supplementation of Acer truncatum oil for 2 weeks. As expected, myelin repair was greatly enhanced in the demyelinated regions with increased mature oligodendrocytes (CC1) and myelin basic protein (MBP). More importantly, the supplementation with Acer truncatum oil in the diet reduced the schizophrenia-like behavior in the open field test (OFT) and the elevated plus-maze compared to the cuprizone recovery group. The results revealed that the diet supplementation with Acer truncatum oil improved behavioral abnormalities, oligodendrocyte maturation, and remyelination in the cuprizone model during recovery. Conclusion: Diet supplementation with Acer truncatum oil attenuates demyelination induced by cuprizone, indicating that Acer truncatum oil is a novel therapeutic diet in demyelinating diseases.

6.
Sci Total Environ ; 838(Pt 2): 155972, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35588812

ABSTRACT

Tropical Pacific decadal variability (TPDV) and its mechanisms are essential for understanding long-term variations in global climate. The spatiotemporal pattern of this decadal variation has yet to be clarified. Here, on the basis of observational data with the help of the adaptive data analysis method, we extracted and investigated the spatiotemporal evolution of the tropical Pacific decadal variability in upper ocean heat content (UOHC) and thermocline depth. The tropical decadal signal propagated eastward along the equator from the western Pacific to the eastern Pacific after the 1970s, with a speed of 4-5 cm s-1 yielding a decadal oscillation of approximately 11-13 years. This decadal variability of the thermocline fluctuations (UOHC) was proven to be closely correlated with western wind anomalies since the 1970s and may have been induced by the regime shift of the Pacific decadal oscillation. These peaks of decadal signals corresponded well with the strong El Niño-Southern Oscillation (ENSO) events, reflecting nonlinear rectification of ENSOs on TPDV. Moreover, the TPDV showed a modulating signal on moderate and weak ENSO events.


Subject(s)
El Nino-Southern Oscillation , Hot Temperature , Oceans and Seas , Pacific Ocean
7.
FASEB J ; 36(4): e22264, 2022 04.
Article in English | MEDLINE | ID: mdl-35333405

ABSTRACT

Heat stress causes many pathophysiological responses in the brain, including neuroinflammation and cognitive deficits. ß-Hydroxybutyric acid (BHBA) has been shown to have neuroprotective effects against inflammation induced by lipopolysaccharide. The aim of the present study was to evaluate the effects of BHBA on neuroinflammation induced by heat stress, as well as the underlying mechanisms. Mice were pretreated with vehicle, BHBA or minocycline (positive control group) and followed by heat exposure (43°C) for 15 min for 14 days. In mice subjected to heat stress, we found that treatment with BHBA or minocycline significantly decreased the level of serum cortisol, the expressions of heat shock protein 70 (HSP70), and the density of c-Fos+ cells in the hippocampus. Surprisingly, the ethological tests revealed that heat stress led to cognitive dysfunctions and could be alleviated by BHBA and minocycline administration. Further investigation showed that BHBA and minocycline significantly attenuated the activation of microglia and astrocyte induced by heat stress. Pro-inflammatory cytokines were attenuated in the hippocampus by BHBA and minocycline treatment. Importantly, compared with the heat stress group, mice in the BHBA treatment group and positive control group experienced a decrease in the expressions of toll-like receptor 4 (TLR4), phospho-p38 (p-p38), and nuclear factor kappa B (NF-κB). Our results elucidated that BHBA inhibits neuroinflammation induced by heat stress by suppressing the activation of microglia and astrocyte, and modulating TLR4/p38 MAPK and NF-κB pathways. This study provides new evidence that BHBA is a potential strategy for protecting animals from heat stress.


Subject(s)
NF-kappa B , Toll-Like Receptor 4 , 3-Hydroxybutyric Acid/metabolism , Animals , Heat-Shock Response , Hippocampus/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Mice , Microglia/metabolism , Minocycline/metabolism , Minocycline/pharmacology , NF-kappa B/metabolism , Neuroinflammatory Diseases , Signal Transduction , Toll-Like Receptor 4/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
8.
J Mol Neurosci ; 72(5): 923-938, 2022 May.
Article in English | MEDLINE | ID: mdl-35129799

ABSTRACT

Hypoglycemia has emerged as a prominent complication in anti-diabetic drug therapy or negative energy balance of animals, which causes brain damage, cognitive impairment, and even death. Brain injury induced by hypoglycemia is closely related to oxidative stress and the production of reactive oxygen species (ROS). The intracellular accumulation of ROS leads to neuronal damage, even death. Ketone body ß-hydroxybutyrate (BHBA) not only serves as alternative energy source for glucose in extrahepatic tissues, but is also involved in cellular signaling transduction. Previous studies showed that BHBA reduces apoptosis by inhibiting the excessive production of ROS and activation of caspase-3. However, the effects of BHBA on apoptosis induced by glucose deprivation and its related molecular mechanisms have been seldom reported. In the present study, PC12 cells and primary cortical neurons were used to establish a low glucose injury model. The effects of BHBA on the survival and apoptosis in a glucose deficient condition and related molecular mechanisms were investigated by using flow cytometry, immunofluorescence, and western blotting. PC12 cells were incubated with 1 mM glucose for 24 h as a low glucose cell model, in which ROS accumulation and cell mortality were significantly increased. After 24 h and 48 h treatment with different concentrations of BHBA (0 mM, 0.05 mM, 0.5 mM, 1 mM, 2 mM), ROS production was significantly inhibited. Moreover, cell apoptosis rate was decreased and survival rate was significantly increased in 1 mM and 2 mM BHBA groups. In primary cortical neurons, at 24 h after treatment with 2 mM BHBA, the injured length and branch of neurites were significantly improved. Meanwhile, the intracellular ROS level, the proportion of c-Fos+ cells, apoptosis rate, and nuclear translocation of NF-κB protein after treatment with BHBA were significantly decreased when compared with that in low glucose cells. Importantly, the expression of p38, p-p38, NF-κB, and caspase-3 were significantly decreased, while the expression of p-ERK was significantly increased in both PC12 cells and primary cortical neurons. Our results demonstrate that BHBA decreased the accumulation of intracellular ROS, and further inhibited cell apoptosis by mediating the p38 MAPK signaling pathway and caspase-3 apoptosis cascade during glucose deprivation. In addition, BHBA inhibited apoptosis by activating ERK phosphorylation and alleviated the damage of low glucose to PC12 cells and primary cortical neurons. These results provide new insight into the anti-apoptotic effect of BHBA in a glucose deficient condition and the related signaling cascade.


Subject(s)
Brain Injuries , Hypoglycemia , 3-Hydroxybutyric Acid/pharmacology , Animals , Apoptosis , Caspase 3 , Glucose/pharmacology , NF-kappa B , Rats , Reactive Oxygen Species , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...