Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Materials (Basel) ; 17(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39124469

ABSTRACT

2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is one of the high-energy oxidants, but has limited application due to its high sensitivity. In this work, polyvinylidene fluoride (PVDF) was used as a co-oxidizer, which is expected to increase the safety of CL-20. One kind of novel graphene-based carbohydrazide complex (GCCo and GCNi) was employed to modify the properties of dual-oxidant CL-20@PVDF composites by the spray drying method and compared with traditional nanocarbon materials (CNTs and GO). The properties of these composites were investigated using the TGA/DSC technique and impact test. The results show that GCCo and GCNi could increase the activation energy (Ea) of CL-20@PVDF composites, and change the physical model of CL-20@PVDF, which followed the random chain scission model and then the first-order reaction model. In addition, these nanocarbon materials could reduce the impact sensitivity of CL-20@PVDF by their unique structure. Besides that, a dual-oxidant CL-20@PVDF system was used to improve the combustion property of Boron. GCCo and GCNi with the synergetic effect could increase the flame temperature and control the burn rate of CL-20@PVDF@B compared with CNTs and GO. The energetic nanocarbon catalyst-modified oxidant provides a facile method for stabilizing high-energy but sensitive materials to broaden their application.

2.
Langmuir ; 39(21): 7503-7513, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37186958

ABSTRACT

In this paper, the two-dimensional (2D) high nitrogen triaminoguanidine-glyoxal polymer (TAGP) has been used to dope hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) crystals using a microfluidic crystallization method. A series of constraint TAGP-doped RDX crystals using a microfluidic mixer (so-called controlled qy-RDX) with higher bulk density and better thermal stability have been obtained as a result of the granulometric gradation. The crystal structure and thermal reactivity properties of qy-RDX are largely affected by the mixing speed of the solvent and antisolvent. In particular, the bulk density of qy-RDX could be slightly changed in the range from 1.78 to 1.85 g cm-3 as a result of varied mixing states. The obtained qy-RDX crystals have better thermal stability than pristine RDX, showing a higher exothermic peak temperature and an endothermic peak temperature with a higher heat release. Ea for thermal decomposition of controlled qy-RDX is 105.3 kJ mol-1, which is 20 kJ mol-1 lower than that of pure RDX. The controlled qy-RDX samples with lower Ea followed the random 2D nucleation and nucleus growth (A2) model, whereas controlled qy-RDX with higher Ea (122.8 and 122.7 kJ mol-1) following some complex model between A2 and the random chain scission (L2) model.

3.
J Hazard Mater ; 398: 122842, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-32768811

ABSTRACT

In this paper, the widely used energetic material RDX had been modified with 2D high nitrogen polymer (TAGP). Various hybrid RDX crystals (qy-RDX) with higher detonation velocity and better thermostability had been obtained as a result of strong intermolecular interactions between TAGP and RDX molecules. The performance of the qy-RDX had been characterized to clarify the inherent mechanisms. It shows that the⊿Hf of qy-RDX could be largely changed in the range of 23.4 kJ kg-1 to 1343.6 kJ kg-1, whereas the density varies only from 1.81 g cm-3 to 1.86 g cm-3. The resulted detonation velocities are in the range of 8725.5 m·s-1 to 9251.8 m·s-1, depending on the content and state of the TAGP dopant. The sensitivity of the resulted qy-RDX is much better than pristine RDX due to improved crystal quality as well as higher concentration of hydrogen bonds. The impact energy is improved from 8.5 J (RDX) to 22 J (qy-RDX-1), whereas the friction sensitivity improves form 130 N to over 360 N for the same case. The Ea for thermal decomposition of qy-RDX-1has reduced from 147.8 kJ mol-1 (RDX) to (124.5 kJ mol-1), since TAGP dopant could be considered as active catalytic sites after melting of RDX.

SELECTION OF CITATIONS
SEARCH DETAIL