Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 44(9): 1748-1767, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37095197

ABSTRACT

Circular RNAs (ciRNAs) are emerging as new players in the regulation of gene expression. However, how ciRNAs are involved in neuropathic pain is poorly understood. Here, we identify the nervous-tissue-specific ciRNA-Fmn1 and report that changes in ciRNA-Fmn1 expression in spinal cord dorsal horn neurons play a key role in neuropathic pain after nerve injury. ciRNA-Fmn1 was significantly downregulated in ipsilateral dorsal horn neurons after peripheral nerve injury, at least in part because of a decrease in DNA helicase 9 (DHX9), which regulates production of ciRNA-Fmn1 by binding to DNA-tandem repeats. Blocking ciRNA-Fmn1 downregulation reversed nerve-injury-induced reductions in both the binding of ciRNA-Fmn1 to the ubiquitin ligase UBR5 and the level of ubiquitination of albumin (ALB), thereby abrogating the nerve-injury-induced increase of ALB expression in the dorsal horn and attenuating the associated pain hypersensitivities. Conversely, mimicking downregulation of ciRNA-Fmn1 in naïve mice reduced the UBR5-controlled ubiquitination of ALB, leading to increased expression of ALB in the dorsal horn and induction of neuropathic-pain-like behaviors in naïve mice. Thus, ciRNA-Fmn1 downregulation caused by changes in binding of DHX9 to DNA-tandem repeats contributes to the genesis of neuropathic pain by negatively modulating UBR5-controlled ALB expression in the dorsal horn.


Subject(s)
Neuralgia , RNA, Circular , Mice , Animals , RNA, Circular/metabolism , Down-Regulation , DNA Helicases , Hyperalgesia/metabolism , Spinal Cord Dorsal Horn/metabolism , Neuralgia/etiology
2.
Pain ; 162(7): 1960-1976, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34130310

ABSTRACT

ABSTRACT: The methyltransferase-like 3 (Mettl3) is a key component of the large N6-adenosine-methyltransferase complex in mammalian responsible for RNA N6-methyladenosine (m6A) modification, which plays an important role in gene post-transcription modulation. Although RNA m6A is enriched in mammalian neurons, its regulatory function in nociceptive information processing remains elusive. Here, we reported that Complete Freund's Adjuvant (CFA)-induced inflammatory pain significantly decreased global m6A level and m6A writer Mettl3 in the spinal cord. Mimicking this decease by knocking down or conditionally deleting spinal Mettl3 elevated the levels of m6A in ten-eleven translocation methylcytosine dioxygenases 1 (Tet1) mRNA and TET1 protein in the spinal cord, leading to production of pain hypersensitivity. By contrast, overexpressing Mettl3 reversed a loss of m6A in Tet1 mRNA and blocked the CFA-induced increase of TET1 in the spinal cord, resulting in the attenuation of pain behavior. Furthermore, the decreased level of spinal YT521-B homology domain family protein 2 (YTHDF2), an RNA m6A reader, stabilized upregulation of spinal TET1 because of the reduction of Tet1 mRNA decay by the binding to m6A in Tet1 mRNA in the spinal cord after CFA. This study reveals a novel mechanism for downregulated spinal cord METTL3 coordinating with YTHDF2 contributes to the modulation of inflammatory pain through stabilizing upregulation of TET1 in spinal neurons.


Subject(s)
Adenosine , Methyltransferases , Animals , Pain/genetics , RNA , RNA, Messenger
3.
J Neurosci ; 39(11): 2125-2143, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30651325

ABSTRACT

Dysfunctions of gene transcription and translation in the nociceptive pathways play the critical role in development and maintenance of chronic pain. Circular RNAs (circRNAs) are emerging as new players in regulation of gene expression, but whether and how circRNAs are involved in chronic pain remain elusive. We showed here that complete Freund's adjuvant-induced chronic inflammation pain significantly increased circRNA-Filip1l (filamin A interacting protein 1-like) expression in spinal neurons of mice. Blockage of this increase attenuated complete Freund's adjuvant-induced nociceptive behaviors, and overexpression of spinal circRNA-Filip1l in naive mice mimicked the nociceptive behaviors as evidenced by decreased thermal and mechanical nociceptive threshold. Furthermore, we found that mature circRNA-Filip1l expression was negatively regulated by miRNA-1224 via binding and splicing of precursor of circRNA-Filip1l (pre-circRNA-Filip1l) in the Argonaute-2 (Ago2)-dependent manner. Increase of spinal circRNA-Filip1l expression resulted from the decrease of miRNA-1224 expression under chronic inflammation pain state. miRNA-1224 knockdown or Ago2 overexpression induced nociceptive behaviors in naive mice, which was prevented by the knockdown of spinal circRNA-Filip1l. Finally, we demonstrated that a ubiquitin protein ligase E3 component n-recognin 5 (Ubr5), validated as a target of circRNA-Filip1l, plays a pivotal role in regulation of nociception by spinal circRNA-Filip1l. These data suggest that miRNA-1224-mediated and Ago2-dependent modulation of spinal circRNA-Filip1l expression regulates nociception via targeting Ubr5, revealing a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.SIGNIFICANCE STATEMENT circRNAs are emerging as new players in regulation of gene expression. Here, we found that the increase of circRNA-Filip1l mediated by miRNA-1224 in an Ago2-dependent way in the spinal cord is involved in regulation of nociception via targeting Ubr5 Our study reveals a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.


Subject(s)
Argonaute Proteins/genetics , Chronic Pain/genetics , Gene Expression Regulation , MicroRNAs/genetics , Nociception/physiology , RNA, Circular/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Epigenesis, Genetic , Inflammation/complications , Inflammation/genetics , Male , Mice , Spinal Cord/metabolism
4.
CNS Neurosci Ther ; 24(10): 947-956, 2018 10.
Article in English | MEDLINE | ID: mdl-29577638

ABSTRACT

AIM AND METHODS: Chronic pain associated with inflammation is a common clinical problem, and the underlying mechanisms yet are incompletely defined. DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under inflammatory pain condition remain largely unknown. Here, we investigated how chemokine receptor CXCR4 expression is regulated by DNA methylation and how it contributes to inflammatory pain induced by complete Freund's adjuvant (CFA) in rats. RESULTS: Intraplantar injection of CFA could not only induce significant hyperalgesia in rats, but also significantly increase the expression of CXCR4 mRNA and protein in the dorsal root ganglion (DRG). Intrathecal injection of CXCR4 antagonist AMD3100 significantly relieved hyperalgesia in inflammatory rats in a time- and dose-dependent manner. Bisulfite sequencing and methylation-specific PCR demonstrate that CFA injection led to a significant demethylation of CpG island at CXCR4 gene promoter. Consistently, the expression of DNMT3b was significantly downregulated after CFA injection. Online software prediction reveals three binding sites of p65 in the CpG island of CXCR4 gene promoter, which has confirmed by the chromatin immunoprecipitation assay, CFA treatment significantly increases the recruitment of p65 to CXCR4 gene promoter. Inhibition of NF-kB signaling using p65 inhibitor pyrrolidine dithiocarbamate significantly prevented the increases of the CXCR4 expression. CONCLUSION: Upregulation of CXCR4 expression due to promoter demethylation followed by increased recruitment of p65 to promoter of CXCR4 gene contributes to inflammatory hyperalgesia. These findings provide a theoretical basis for the treatment of chronic pain from an epigenetic perspective.


Subject(s)
Demethylation/drug effects , Hyperalgesia/etiology , Hyperalgesia/metabolism , Inflammation/complications , Receptors, CXCR4/metabolism , Up-Regulation/physiology , Animals , Benzylamines , Chromatin Immunoprecipitation , Cyclams , Freund's Adjuvant/toxicity , Heterocyclic Compounds/pharmacology , Inflammation/chemically induced , Male , Pain Measurement , Pain Threshold/drug effects , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, CXCR4/antagonists & inhibitors , Up-Regulation/drug effects
5.
Int J Neurosci ; 128(2): 125-132, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28866949

ABSTRACT

PURPOSE: The current study aims at investigating the downstream targets of spinal Annexin A10 in modulating neuropathic pain. MATERIALS AND METHODS: Paw withdrawal latency and paw withdrawal threshold were measured to evaluate the pain-associated behaviour in rats. The expression of spinal Annexin A10, phosphorylated-extracellular regulated kinase 1/2 and extracellular regulated kinase were detected by western blotting. The level of tumour necrosis factor-α and interleukine-1ß was tested by enzyme-linked immunosorbent assay (ELISA) kits. RESULTS: Chronic constrictive injury caused pain hypersensitivity in rats, along with increased expression of spinal Annexin A10, phosphorylated-extracellular regulated kinase 1/2, tumour necrosis factor-α and interleukine-1ß in rats. Knockdown of spinal Annexin A10 suppressed the chronic constrictive injury-induced hyperalgesia, and inhibited the chronic constrictive injury-induced increased expression of phosphorylated-extracellular regulated kinase 1/2, tumour necrosis factor-α and interleukine-1ß in the spinal cord. Inhibition of spinal extracellular regulated kinase activation decreased the release of tumour necrosis factor-α and interleukine-1ß, but did not change the increased expression of Annexin A10 caused by chronic constrictive injury. CONCLUSIONS: Annexin A10 contributed to the development of neuropathic pain by activating spinal extracellular regulated kinase signalling and the subsequent release of tumour necrosis factor-α and interleukine-1ß in the spinal cord.


Subject(s)
Annexins/metabolism , Hyperalgesia/metabolism , MAP Kinase Signaling System/physiology , Neuralgia/metabolism , Peripheral Nerve Injuries/metabolism , Spinal Cord/metabolism , Animals , Annexins/genetics , Disease Models, Animal , Gene Knockdown Techniques , Hyperalgesia/etiology , Interleukin-1beta/metabolism , Male , Neuralgia/etiology , Peripheral Nerve Injuries/complications , Phosphorylation , Physical Stimulation , RNA, Small Interfering , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
6.
Anesthesiology ; 127(1): 147-163, 2017 07.
Article in English | MEDLINE | ID: mdl-28437360

ABSTRACT

BACKGROUND: Ten-eleven translocation methylcytosine dioxygenase converts 5-methylcytosine in DNA to 5-hydroxymethylcytosine, which plays an important role in gene transcription. Although 5-hydroxymethylcytosine is enriched in mammalian neurons, its regulatory function in nociceptive information processing is unknown. METHODS: The global levels of 5-hydroxymethylcytosine and ten-eleven translocation methylcytosine dioxygenase were measured in spinal cords in mice treated with complete Freund's adjuvant. Immunoblotting, immunohistochemistry, and behavioral tests were used to explore the downstream ten-eleven translocation methylcytosine dioxygenase-dependent signaling pathway. RESULTS: Complete Freund's adjuvant-induced nociception increased the mean levels (± SD) of spinal 5-hydroxymethylcytosine (178 ± 34 vs. 100 ± 21; P = 0.0019), ten-eleven translocation methylcytosine dioxygenase-1 (0.52 ± 0.11 vs. 0.36 ± 0.064; P = 0.0088), and ten-eleven translocation methylcytosine dioxygenase-3 (0.61 ± 0.13 vs. 0.39 ± 0.08; P = 0.0083) compared with levels in control mice (n = 6/group). The knockdown of ten-eleven translocation methylcytosine dioxygenase-1 or ten-eleven translocation methylcytosine dioxygenase-3 alleviated thermal hyperalgesia and mechanical allodynia, whereas overexpression cytosinethem in naïve mice (n = 6/group). Down-regulation of spinal ten-eleven translocation methylcytosine dioxygenase-1 and ten-eleven translocation methylcytosine dioxygenase-3 also reversed the increases in Fos expression (123 ± 26 vs. 294 ± 6; P = 0.0031; and 140 ± 21 vs. 294 ± 60; P = 0.0043, respectively; n = 6/group), 5-hydroxymethylcytosine levels in the Stat3 promoter (75 ± 16.1 vs. 156 ± 28.9; P = 0.0043; and 91 ± 19.1 vs. 156 ± 28.9; P = 0.0066, respectively; n = 5/group), and consequent Stat3 expression (93 ± 19.6 vs. 137 ± 27.5; P = 0.035; and 72 ± 15.2 vs. 137 ± 27.5; P = 0.0028, respectively; n = 5/group) in complete Freund's adjuvant-treated mice. CONCLUSIONS: This study reveals a novel epigenetic mechanism for ten-eleven translocation methylcytosine dioxygenase-1 and ten-eleven translocation methylcytosine dioxygenase-3 in the modulation of spinal nociceptive information via targeting of Stat3.


Subject(s)
Cytosine/analogs & derivatives , Cytosine/metabolism , DNA Methylation/physiology , Dioxygenases/metabolism , Inflammation/physiopathology , Nociceptive Pain/physiopathology , 5-Methylcytosine/metabolism , Animals , Chronic Pain/physiopathology , DNA-Binding Proteins/metabolism , Disease Models, Animal , Male , Mice , Proto-Oncogene Proteins/metabolism , Signal Transduction , Spinal Cord/physiopathology
7.
J Neurosci ; 36(9): 2769-81, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26937014

ABSTRACT

DNA 5-hydroxylmethylcytosine (5hmC) catalyzed by ten-eleven translocation methylcytosine dioxygenase (TET) occurs abundantly in neurons of mammals. However, the in vivo causal link between TET dysregulation and nociceptive modulation has not been established. Here, we found that spinal TET1 and TET3 were significantly increased in the model of formalin-induced acute inflammatory pain, which was accompanied with the augment of genome-wide 5hmC content in spinal cord. Knockdown of spinal TET1 or TET3 alleviated the formalin-induced nociceptive behavior and overexpression of spinal TET1 or TET3 in naive mice produced pain-like behavior as evidenced by decreased thermal pain threshold. Furthermore, we found that TET1 or TET3 regulated the nociceptive behavior by targeting microRNA-365-3p (miR-365-3p). Formalin increased 5hmC in the miR-365-3p promoter, which was inhibited by knockdown of TET1 or TET3 and mimicked by overexpression of TET1 or TET3 in naive mice. Nociceptive behavior induced by formalin or overexpression of spinal TET1 or TET3 could be prevented by downregulation of miR-365-3p, and mimicked by overexpression of spinal miR-365-3p. Finally, we demonstrated that a potassium channel, voltage-gated eag-related subfamily H member 2 (Kcnh2), validated as a target of miR-365-3p, played a critical role in nociceptive modulation by spinal TET or miR-365-3p. Together, we concluded that TET-mediated hydroxymethylation of miR-365-3p regulates nociceptive behavior via Kcnh2. SIGNIFICANCE STATEMENT: Mounting evidence indicates that epigenetic modifications in the nociceptive pathway contribute to pain processes and analgesia response. Here, we found that the increase of 5hmC content mediated by TET1 or TET3 in miR-365-3p promoter in the spinal cord is involved in nociceptive modulation through targeting a potassium channel, Kcnh2. Our study reveals a new epigenetic mechanism underlying nociceptive information processing, which may be a novel target for development of antinociceptive drugs.


Subject(s)
Cytosine/analogs & derivatives , DNA Methylation/genetics , MicroRNAs/metabolism , Pain/physiopathology , 5-Methylcytosine/analogs & derivatives , Animals , Cytosine/metabolism , DNA Methylation/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Disease Models, Animal , Down-Regulation/drug effects , Down-Regulation/genetics , Epigenesis, Genetic , Formaldehyde/toxicity , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Inbred Strains , MicroRNAs/genetics , Pain/chemically induced , Pain/pathology , Phosphopyruvate Hydratase/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Spinal Cord/metabolism , Time Factors
8.
J Neurosci ; 34(29): 9476-83, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-25031391

ABSTRACT

Emerging evidence has shown that miRNA-mediated gene expression modulation contributes to chronic pain, but its functional regulatory mechanism remains unknown. Here, we found that complete Freund's adjuvant (CFA)-induced chronic inflammation pain significantly reduced miRNA-219 (miR-219) expression in mice spinal neurons. Furthermore, the expression of spinal CaMKIIγ, an experimentally validated target of miR-219, was increased in CFA mice. Overexpression of spinal miR-219 prevented and reversed thermal hyperalgesia and mechanical allodynia and spinal neuronal sensitization induced by CFA. Concurrently, increased expression of spinal CaMKIIγ was reversed by miR-219 overexpression. Downregulation of spinal miR-219 in naive mice induced pain-responsive behaviors and increased p-NMDAR1 expression, which could be inhibited by knockdown of CaMKIIγ. Bisulfite sequencing showed that CFA induced the hypermethylation of CpG islands in the miR-219 promoter. Treatment with demethylation agent 5'-aza-2'-deoxycytidine markedly attenuated pain behavior and spinal neuronal sensitization, which was accompanied with the increase of spinal miR-219 and decrease of CaMKIIγ expression. Together, we conclude that methylation-mediated epigenetic modification of spinal miR-219 expression regulates chronic inflammatory pain by targeting CaMKIIγ.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Chronic Pain , Epigenesis, Genetic , Gene Expression Regulation , MicroRNAs/metabolism , Spinal Cord/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Chronic Pain/etiology , Chronic Pain/metabolism , Chronic Pain/pathology , CpG Islands/genetics , Disease Models, Animal , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , Freund's Adjuvant/adverse effects , HEK293 Cells , Humans , Inflammation/chemically induced , Inflammation/complications , Male , Mice , Mice, Inbred Strains , MicroRNAs/genetics , Neurons/drug effects , Pain Measurement , RNA, Small Interfering/pharmacology , Spinal Cord/pathology , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...