Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Mol Ecol Resour ; 22(3): 988-1001, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34652864

ABSTRACT

Rhododendron henanense subsp. lingbaoense (hereafter referred to as R. henanense) is an endemic species naturally distributed in the Henan province, China, with high horticultural, ornamental and medicinal value. Herein, we report a de novo genome assembly for R. henanense using a combination of PacBio long read and Illumina short read sequencing technologies. In total, we assembled 634.07 Mb with a contig N50 of 2.5 Mb, representing ~96.93% of the estimated genome size. By applying Hi-C data, 13 pseudochromosomes of R. henanense genome were assembled, covering ~98.21% of the genome assembly. The genome was composed of ~65.76% repetitive sequences and 31,098 protein-coding genes, 88.77% of which could be functionally annotated. Rhododendron henanense displayed a high level of synteny with other Rhododendron species from the Hymenanthes subgenus. Our data also suggests that R. henanense genes related to stress responses have undergone expansion, which may underly the unique abiotic and biotic stress resistance of the species. This alpine Rhododendron chromosome-scale genome assembly provides fundamental molecular resources for germplasm conservation, breeding efforts, evolutionary studies, and elucidating the unique biological characteristics of R. henanense.


Subject(s)
Rhododendron , Chromosomes , Genome , Molecular Sequence Annotation , Phylogeny , Plant Breeding , Rhododendron/genetics
2.
Mitochondrial DNA B Resour ; 6(10): 2953-2954, 2021.
Article in English | MEDLINE | ID: mdl-34553055

ABSTRACT

The complete plastid genome of Gentiana leucomelaena Maxim., belonging to the most species-rich section Chondrophyllae in Gentiana, was determined and analyzed in this study. It has a circular-mapping molecular with the length of 131,856 bp, the shortest one among all available Gentiana plastomes. Gentiana leucomelaena has gene mutation, for example ndh and rpl2 intron, and reversed SSC region comparing with the available species in sections Cruciata, Frigida, Kudoa, Isomeria and Microsperma. Phylogenetic analysis showed that G. leucomelaena clustered together with section Cruciata with a long branch. The plastome provides in this work will contribute to elucidate the phylogenetics and evolution in Gentiana.

3.
Article in English | WPRIM (Western Pacific) | ID: wpr-922124

ABSTRACT

OBJECTIVE@#To investigate the correlation of platelet and coagulation function with blood stasis syndrome (BSS) in coronary heart disease (CHD).@*METHODS@#The protocol for this meta-analysis was registered on PROSPERO (CRD42019129452). PubMed, Excerpta Medica Database (Embase), the Cochrane Library, and China National Knowledge Infrastructure (CNKI) were searched from inception to 1st June, 2020. Trials were considered eligible if they enrolled BSS and non-BSS (NBSS) patients with CHD and provided information on platelet and coagulation function. The platelet function, coagulation function, and fibrinolytic activity were compared between the BSS and NBSS groups. Forest plots were generated to show the SMDs or ESs with corresponding 95% CIs for each study. Subgroup analysis and sensitivity analysis were performed to explore potential sources of heterogeneity.@*RESULTS@#The systematic search identified 1,583 articles. Thirty trials involving 10,323 patients were included in the meta-analysis. The results showed that mean platelet volume, platelet distribution width, platelet aggregation rate, platelet P selectin, fibrinogen, plasminogen activator inhibitor-1 (PAI-1), thromboxane B2 (TXB2), 6-keto-prostaglandin F1alpha (6-keto-PGF1 α), and TXB2/6-keto-PGF1 α were higher in the BSS group than in the NBSS group (P<0.05 or P<0.01). Activated partial thromboplastin time was lower in the BSS group than in the NBSS group in the acute phase of CHD (P<0.01). The R and K values in thromboelastography and tissue plasminogen activator (t-PA) and t-PA/PAI-1 were lower in the BSS group than in the NBSS group (all P<0.01). No difference was found in the results of platelet count, plateletcrit, maximum amplitude, von Willebrand factor, prothrombin time, thrombin time, international normalized ratio, etc. between groups.@*CONCLUSIONS@#Increased platelet function, hypercoagulability, and decreased fibrinolytic activity were found among CHD patients with BSS.


Subject(s)
Humans , Blood Coagulation , Blood Platelets , Coronary Disease , Platelet Aggregation , Tissue Plasminogen Activator
4.
Biosci Rep ; 40(6)2020 06 26.
Article in English | MEDLINE | ID: mdl-32495827

ABSTRACT

Rhododendron micranthum is an evergreen shrub species widely distributed in China that has high ornamental and medicinal value. However, there is a lack of molecular and genomic data for this plant, which severely restricts the development of its relevant research. The objective of the present study was to conduct a first genomic survey of R. micranthum and determine its whole-genome sequencing scheme. Next-generation sequencing (Illumina Hi-Seq Xten) was used to measure the genome size of R. micranthum, K-mer analysis were employed to investigate its genomic profile. Finally, we conducted bioinformatics methods to performed SSR (simple sequence repeat) prediction based on the genomic data. The genome size of R. micranthum was estimated to be 554.22 Mb. The heterozygosity ratio was 0.93%, and the sequence repeat ratio was calculated to be 49.17%. The clean reads of R. micranthum were assembled into 2281551 scaffolds with a N50 value of 916 bp. A total of 479724 SSR molecular markers were identified in the R. micranthum genome, and 871656 pairs of primers designed for application. Among of them, 100 primer pairs were validated, and 71 primer pairs were successfully amplified. In summary, the R. micranthum genome is complex with high heterozygosity and low repeated sequences. In future whole-genome research in R. micranthum, higher-depth '2+3' (Illumina+PacBio) sequencing may yield better assembly results.


Subject(s)
Genes, Plant , Genome, Plant , Microsatellite Repeats , Rhododendron/genetics , Whole Genome Sequencing , Base Composition , Genetic Markers , High-Throughput Nucleotide Sequencing , Plant Leaves , Rhododendron/classification
5.
Front Genet ; 9: 564, 2018.
Article in English | MEDLINE | ID: mdl-30534138

ABSTRACT

Understanding the genetic structure and evolutionary history of plants contributes to their conservation and utilization and helps to predict their response to environmental changes. The wildflower and traditional Chinese and Tibetan medicinal plant Gentiana lawrencei var. farreri is endemic to the Qinghai-Tibetan Plateau (QTP). To explore its genetic structure and evolutionary history, the genetic diversity, divergence, and demographics were analyzed in individuals from 31 locations across the QTP using 1 chloroplast marker and 10 nuclear microsatellite loci. High genetic diversity was detected in G. lawrencei var. farreri, and most of the genetic variance was found within populations. Values of F ST in G. lawrencei var. farreri from nuclear microsatellite and chloroplast data were 0.1757 and 0.739, respectively. The data indicated the presence of isolation by distance. The southeast edge of the QTP was the main refugium for G. lawrencei var. farreri, and one microrefugium was also detected in the plateau platform of the QTP. Both nuclear microsatellite and chloroplast data indicated that the populations were divided into two geographically structured groups, a southeast group and a northwest group. The current genetic pattern was mainly formed through recolonization from the two independent refugia. Significant melt was detected at the adjacent area of the two geographically structured groups. Approximate Bayesian computation showed that the northwest group had diverged from the southeast group, which then underwent population expansion. Our results suggest that the two-refugia pattern had a significant impact on the genetic structure and evolutionary history of G. lawrencei var. farreri.

6.
Molecules ; 22(11)2017 Oct 29.
Article in English | MEDLINE | ID: mdl-29109383

ABSTRACT

Prostate cancer is a major public health problem worldwide. For the development of potential anti-prostate cancer agents, a series of novel arylpiperazine derivatives containing the saccharin moiety based on previous studies was designed, synthesized, and evaluated in prostate (PC-3, LNCaP, and DU145) cancer cell lines for their anticancer activities. The majority of the compounds exhibited excellent selective activity for the tested cancer cells. Compounds 4 and 12 exhibited strong cytotoxic activities against DU145 cells (half maximal inhibitory concentration (IC50) < 2 µM). The structure-activity relationship (SAR) of these arylpiperazine derivatives was also discussed based on the obtained experimental data. This work provides a potential lead compound for anticancer agent development focusing on prostate cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Saccharin/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Humans , Molecular Structure , Structure-Activity Relationship
7.
PeerJ ; 4: e1735, 2016.
Article in English | MEDLINE | ID: mdl-26925343

ABSTRACT

Chinese jujube (Ziziphus jujuba Mill. [Rhamnaceae]), native to China, is a major dried fruit crop in Asia. Although many simple sequence repeat (SSR) markers are available for phylogenetic analysis of jujube cultivars, few of these are validated on the level of jujube populations. In this study, we first examined the abundance of jujube SSRs with repeated unit lengths of 1-6 base pairs, and compared their distribution with those in Arabidopsis thaliana. We identified 280,596 SSRs in the assembled genome of jujube. The density of SSRs in jujube was 872.60 loci/Mb, which was much higher than in A. thaliana (221.78 loci/Mb). (A+ T)-rich repeats were dominant in the jujube genome. We then randomly selected 100 SSRs in the jujube genome with long repeats and used them to successfully design 70 primer pairs. After screening using a series of criteria, a set of 20 fluorescently labeled primer pairs was further selected and screened for polymorphisms among three jujube populations. The average number of alleles per locus was 12.8. Among the three populations, mean observed and expected heterozygosities ranged from 0.858 to 0.967 and 0.578 to 0.844, respectively. After testing in three populations, all SSRs loci were in Hardy-Weinberg equilibrium (HWE) in at least one population. Finally, removing high null allele frequency loci and linked loci, a set of 17 unlinked loci was in HWE. These markers will facilitate the study of jujube genetic structure and help elucidate the evolutionary history of this important fruit crop.

8.
Article in English | MEDLINE | ID: mdl-18349504

ABSTRACT

LTR-retrotransposons are genetic elements having the direct long terminal repeats (LTRs). It can move via an RNA intermediate within genomes and is an important fraction of eukaryote genomes. Low-energy N(+) ion beam promoted the transcription of the copia-retransposons in those wheat (cv. 'Zhoumai 16', which were radiated and allowed to grow for 24 h and 48 h from the planting. Relative expression ratio of the copia-retransposons was elevated in different degrees (with a max 40 fold) in wheat plants treated with different doses of N(+) beam, comparing to that in the controls. The molecule markers of the IRAP and REMAP to the DNA isolated from the 14-d leaves of wheat plants treated with the low-energy N(+) beam showed that the transposition of some copia-retransposons was re-activated. The enhanced transcription of the copia-retransposons in wheat could weaken or enhance the expression of their nearby genes. The transposition of the retrotransposon in genome can change the primary structure of the functional DNA fragments of chromosomes, and it can also be visualized as the appearance of a new phenotype of plants. In the mid 1980s, the biological effects of low-energy ion beam were recognized and demonstrated experimentally. Hence, it suggests that the enhanced transcription and the re-activated transposition of the retrotransposons are partially attributed to the biological effect of low-energy ion beam.


Subject(s)
Retroelements/genetics , Retroelements/radiation effects , Transcription, Genetic/radiation effects , Triticum/genetics , Triticum/radiation effects , Genome, Plant/genetics , Genome, Plant/radiation effects , Plant Leaves/genetics , Plant Leaves/radiation effects , Terminal Repeat Sequences/genetics , Terminal Repeat Sequences/radiation effects , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...