Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 366: 121800, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996600

ABSTRACT

The continuous rise of emerging contaminants (ECs) in the environment has been a growing concern due to their potentially harmful effects on humans, animals, plants, and aquatic life, even at low concentrations. ECs include human and veterinary pharmaceuticals, hormones, personal care products, pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organic dyes, heavy metals (HMs), and others. The world's growing population contributes to the release of many kinds of chemicals into the environment, which is estimated to be more than 200 billion metric tons annually and results in over 9 million deaths. The removal of these contaminants using conventional physical, chemical, and biological treatments has proven to be ineffective, highlighting the need for simple, effective, inexpesive, practical, and eco-friendly alternatives. Thus, this article discusses the utilization of subcritical water oxidation (SBWO) and subcritical water extraction (SBWE) techniques to remove ECS from the environment. Subcritical water (water below the critical temperature of 374.15 °C and critical pressure of 22.1 Mpa) has emerged as one of the most promising methods for remediation of ECs from the environment due to its non-toxic properties, simplicity and efficiency of application. Furthermore, the impact of temperature, pressure, treatment time, and utilization of chelating agents, organic modifiers, and oxidizing agents in the static and dynamic modes was investigated to establish the best conditions for high ECs removal efficiencies.

2.
Int J Environ Health Res ; : 1-18, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037127

ABSTRACT

Allium dictyoprasum C.A. Meyer ex Kunth (A. dictyoprasum) underwent comprehensive analysis, encompassing quantum chemical computations to assess its radical scavenging potential, chemical and elemental composition, total phenolic content, and antimicrobial activity. Experimental and theoretical investigations focused on elucidating the radical scavenging properties of polyhydroxy phenolic compounds present in the plant. Quantum chemical calculations were employed to evaluate the antioxidants employed to evaluate selected polyhydroxy phenolic molecules including flavonoids, hydrocinnamic acid derivatives, and hydroxybenzoic acid derivatives from natural sources. Thermochemical parameters of these compounds were calculated by the B3LYP/6-311 G++(d,p) level in both gas and solvent phases to elucidate the radical scavenging mechanism including hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). Analysis of A. dictyoprasum extracts obtained via various extraction methods revealed the presence of several major compounds, including dimethyl trisulfide, 3,5-Dihydroxy-6-methyl-2,3-dihydro-4 H-pyran-4-one, 2-Methoxy-4-vinylphenol, Dimethyl phthalate, Methyl palmitate, Methyl oleate, Methyl stearate, (9Z)-9-Octadecenamide. Notably, Malic acid and Quinic acid were identified as major compounds, with concentrations of 43.31 and 17.47 mg kg-1 extract, respectively, based on LC-MS/MS analysis. The total phenolic content of the extract was measured as 17.83 mg gallic acid/mL, while its free radical scavenging activity was 80.89% per mg/mL. Elemental analysis revealed significant levels of Mg, K, Na, Fe, and P, with minor concentrations of elements such as Ti, Tl, B, and Be. Furthermore, A. dictyoprasum exhibited notable antibacterial activity against various bacteria strains, surpassing the efficacy of some commercial antibiotics.


Quantum chemical calculations of radical scavenging analysis were performed.Thermochemical parameters were calculated by the B3LYP/6­311 G++(d,p) level.Radical scavenging mechanism was evaluated based on HAT, SET-PT and SPLET.Chemical composition of Allium dictyoprasum C.A. Meyer ex Kunth was determined.A. dictyoprasum has a greater antibacterial effects than some commercial antibiotics.

3.
J Environ Manage ; 362: 121333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833925

ABSTRACT

The unregulated release of chemical dyes into the environment presents considerable environmental hazards when left untreated. Photocatalytic degradation, acknowledged as an eco-friendly and cost-effective method, has garnered attention for its efficacy in eliminating organic pollutants like dye. Consequently, the development of multifunctional materials with different applications in environmental and catalytic fields emerges as a promising avenue. Recognizing the significance of integrating catalysts and porous materials for enhancing interactions between pollutants and photo-sensitive substances, magnetic hydrochar emerges as a solution offering heightened efficiency, scalability, recyclability, and broad applicability in various environmental processes, notably wastewater treatment, due to its facile separation capability. In this study, Fe3O4-based, super-paramagnetic hydrochar (SMHC) was simultaneously synthesized in a single step using a coconut shell in the subcritical water medium. A thorough analysis was conducted on both raw hydrochar (RHC) and SMHC to unravel the mechanism of interaction between Fe3O4 nanoparticles and the hydrochar matrix. The synthesized hydrochar exhibited super-paramagnetic characteristics, with a saturation magnetization of 23.7 emu/g and a magnetic hysteresis loop. SMHC displayed a BET surface area of 42.6 m2/g and an average pore size of 26.3 nm, indicating a mesoporous structure according to nitrogen adsorption-desorption isotherms. XRD analysis revealed magnetic crystal sizes in the obtained SMHC to be 13.7 nm. The photocatalytic performance of SMHC was evaluated under visible light exposure in the presence of H2O2 for Astrazon yellow (AY) dye degradation, with optimization conducted using response surface methodology (RSM). The most substantial dye removal, reaching 92.83%, was achieved with 0.4% H2O2 at a 20 mg/L dye concentration and an 80-min reaction duration.


Subject(s)
Water Pollutants, Chemical , Catalysis , Water Pollutants, Chemical/chemistry , Coloring Agents/chemistry , Water/chemistry , Adsorption
4.
Int J Environ Health Res ; : 1-13, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38817209

ABSTRACT

Helichrysum sanguineum (L.) Kostel (H. sanguineum), a member of the Asteraceae family, has been traditionally employed for various medicinal purposes owing to its rich phytochemical composition. This study investigates the anticancer properties of various extracts of H. sanguineum (ethanol, acetonitrile, hexane, and chloroform) against breast cancer cells, shedding light on its chemical constituents and their potential therapeutic effects. In vitro assays demonstrate the profound inhibitory effects of H. sanguineum extract on human fibroblast and breast cancer cells. Furthermore, we elucidate the underlying mechanisms of action, revealing its ability to induce apoptosis and cell cycle arrest in breast cancer cells. The cytotoxicity and apoptosis outcomes in breast cancer cells varied across different extracts, yet no adverse effects were observed on healthy cells at equivalent concentrations. Furthermore, all extracts initially promoted breast cancer cell proliferation, with the chloroform extract notably reducing cancer cell proliferation even at low concentrations. GC-MS analysis identifies the major chemical constituents of the extract, including flavonoids, terpenoids, and phenolic compounds, which likely contribute to its anticancer activity. Our findings highlight the potential of H. sanguineum extract as a natural agent for breast cancer treatment and the need for further exploration of its mechanisms and clinical applications.

5.
Int J Biol Macromol ; 264(Pt 1): 130529, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432281

ABSTRACT

In this study, the inhibition potential against Klebsiella pneumoniae (K. pneumoniae) and the characterization of fish oil (FO) emulsion gel (EGE) containing almond shell hydrochar (AH) were investigated. Oily water of mullet liver was emulsified using tween 80, then gelled using gelatin and finally immobilized into hydrochar using an ultrasonic homogenizer. Characteristics and surface analysis of hydrochar-based emulsion gel (HEGE) were examined using FTIR and SEM. Stability, particle size distribution and zeta potential of HEGE were measured. In this study, a zeta potential of -18.46 indicated that HEGE was more stable than EGE (35.7 mV). The addition of hydrochar to the emulsion gel containing micro-droplets enabled the structure to become fully layered and stable. Time-dependent inactivation of K. pneumoniae exposed to HEGE and fixed in 6 mm-fish skin was evaluated for the first time in this study. While the highest log reduction and percent reduction in the bacterial count were achieved within 5 min with 0.87 CFU/cm2 and 86.60% with EGE, the lowest log reduction and percent reduction were achieved with 0.003 CFU/cm2 and 0.082% with HEGE in 30 min. In conclusion, the almond shell hydrochar-immobilized emulsion gel is a functional adsorbent that can inhibit K. pneumonia, and its stability and performance make it a unique candidate for further studies in this field.


Subject(s)
Pneumonia , Prunus dulcis , Fish Oils/chemistry , Emulsions/chemistry , Klebsiella pneumoniae , Gels
6.
Int J Environ Health Res ; : 1-14, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38465620

ABSTRACT

Onosma sintenisii Hausskn. ex Bornm. (O. sintenisii) belongs to the Boraginaceae family and it is an endemic species from Irano-turanian phytogeographical region (central and eastern Anatolia) that distributes in steppe areas. This study aimed to investigate the chemical composition, antioxidant, in vitro cytotoxic and apoptosis induction of methanol extract of aerial parts of O. sintenisii. As a result of GC/MS analysis, 14 components were identified, and the major compounds of the extracts are retronecine (13.94%), α.-D-Glucopyranosiduronic acid (10.86%), melaniline (7.5%) and 1,2-Butanediol (4.02%), respectively. Antioxidant properties of O. sintenisii were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP) and superoxide radical scavenging activity methods. While the DPPH free radical scavenging activity results of O. sintenisii extract varied between 62.49% and 32.27%, reducing power activity and superoxide radical scavenging activity were found to be low. The result of the MTT assay revealed strong anticancer activity of O. sintenisii extract. The most significant cytotoxic effect was noted at a concentration of 1000 µg/mL after 48 hours. These findings together with flow cytometry analysis suggest that apoptosis can be the main mechanism underlying cell death after O. sintenisii extract treatment.

7.
Molecules ; 29(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38202840

ABSTRACT

Most organic pollutants are serious environmental concerns globally due to their resistance to biological, chemical, and photolytic degradation. The vast array of uses of organic compounds in daily life causes a massive annual release of these substances into the air, water, and soil. Typical examples of these substances include pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Since they are persistent and hazardous in the environment, as well as bio-accumulative, sensitive and efficient extraction and detection techniques are required to estimate the level of pollution and assess the ecological consequences. A wide variety of extraction methods, including pressurized liquid extraction, microwave-assisted extraction, supercritical fluid extraction, and subcritical water extraction, have been recently used for the extraction of organic pollutants from the environment. However, subcritical water has proven to be the most effective approach for the extraction of a wide range of organic pollutants from the environment. In this review article, we provide a brief overview of the subcritical water extraction technique and its application to the extraction of PAHs, PCBs, pesticides, pharmaceuticals, and others form environmental matrices. Furthermore, we briefly discuss the influence of key extraction parameters, such as extraction time, pressure, and temperature, on extraction efficiency and recovery.

8.
Int J Environ Health Res ; 34(4): 2124-2139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37199334

ABSTRACT

Eremurus spectabilis M. Bieb was extensively investigated experimentally and theoretically, including the antioxidant properties of compounds such as flavonoids, hydroxycinnamic acid derivatives, hydroxybenzoic acid derivatives, and organic acids. Antioxidant activity was investigated using the Density Functional Theory (DFT) method based on three known mechanisms: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). Subcritical water extraction (SWE), soxhlet extraction (SE), and solvent extraction (SOE) techniques were applied in the extraction process. Malic acid was the major compound with an extract concentration of 38,532.84 ± 1849.58 µg analyte/kg, total phenolics, and free radical scavenging activity were 10.67 mg gallic acid/mL extract and 73.89% per mg/mL extract, respectively. P, Fe, Na, Mg, K, and Ca were the main elements. The antibacterial activity of E. spectabilis against seven bacteria was evaluated, and it was found to be higher than the commercial antibiotics P10 and AMC30.


Subject(s)
Anti-Infective Agents , Protons , Antioxidants/analysis , Phenols/analysis , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
9.
Environ Res ; 250: 117923, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38104920

ABSTRACT

Hydrochar is a carbonaceous material that is generated through the process of hydrothermal carbonization (HTC) from biomass, which has garnered considerable attention in recent years owing to its potential applications in a diverse range of fields, such as environmental remediation and agriculture. Hydrochar is produced from a diverse range of biomass waste materials and retains exceptional properties, including high carbon content, stability, and surface area, making it an optimal candidate for various enviro-agricultural applications. Moreover, it delves into the production process of hydrochar, with explicit emphasis on the optimization of certain properties during the production of hydrochar from bio-waste. Furthermore, the potential of hydrochar as an adsorbent and catalyst support for heavy metals and dyes was extensively explored, along with a soil remediation potential that can improve the physical, chemical and biological properties of soil. This comprehensive review aims to provide a thorough overview of hydrochar with a particular focus on its production, properties, and prospective applications. The significance of hydrochar is accentuated and the growing need for alternative sources of energy and materials that are environmentally sustainable is highlighted in this paper. Besides, the consequence of hydrochar on soil properties such as water-holding capacity, nutrient retention, and total soil porosity, as well as its influence on soil chemical properties such as cation exchange capacity, electrical conductivity, and surface functionality is scrutinized.


Subject(s)
Agriculture , Environmental Restoration and Remediation , Agriculture/methods , Environmental Restoration and Remediation/methods , Charcoal/chemistry , Soil/chemistry
10.
Int J Environ Health Res ; : 1-13, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37668001

ABSTRACT

Pesticides are dangerous chemicals that can harm to people and the environment when applied inappropriately or in excess. In this research, various pesticide residues were investigated in 48 pepper samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). All samples were collected randomly in two periods of time (September and December) from markets and greengrocers in four provinces (Siirt, Mardin, Diyarbakir, and Batman). Considering the means of the first and second periods, diclofop-methyl had the highest concentration of 29.4 ± 7.7 µg kg-1, and diazinon had the lowest of 21.1 ± 4.6 µg kg-1. Based on the maximum residue limits (MRLs) of pesticides specified in the Turkish Food Codex, pyrimethanil, bupirimate, and diclofop-methyl were found to be below the maximum acceptable residue limit, while pyridaphention, dinoseb, diazinon, and pirimiphos-methyl were found to be above the limit. Thus, the current study demonstrated the potential of LC-MS/MS as a crucial technique for accurate measurements and confirmations of pesticides in different pepper varieties.

11.
Chemosphere ; 339: 139558, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37467863

ABSTRACT

Today, where water resources are polluted rapidly, the need for eco-friendly green methods is gradually increasing. Conversion of waste biomass into functional adsorbents that can be utilized in water treatment is a win-win practice for both recycling and water pollution treatment. In this study, the adsorbent material was obtained from the palm leaf to contribute to sustainable green energy. This cellulose-containing adsorbent material was tested in the removal of Methylene Blue (MB) and Basic Red-18 (BR18). The properties of palm leaf adsorbent were determined. The best removal efficiencies and optimum conditions were determined in the adsorption process. In both dye types; the original pH value, 2 g/L adsorbent dose, 25 mg/L dye concentration, and 120 min were chosen as the optimum conditions since the best removal efficiency was obtained in the experiments performed at 25 °C. At these conditions, the removal efficiencies were found to be 100% and 90% for BR18 and MB, respectively. In addition, adsorption kinetics, isotherms, and thermodynamic data were analyzed. For BR18 and MB, it was found to fit the Langmuir isotherm and pseudo-2nd order. Palm leaf adsorbent was used with an efficiency of over 50% in four consecutive cycles.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Hydrochloric Acid , Adsorption , Biomass , Water Pollutants, Chemical/chemistry , Thermodynamics , Methylene Blue/chemistry , Kinetics , Cations , Hydrogen-Ion Concentration
12.
Arch Microbiol ; 205(8): 287, 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37454356

ABSTRACT

Laccases or laccase-like multicopper oxidases have great potential in bioremediation to oxidase phenolic or non-phenolic substrates. However, their inability to maintain stability in harsh environmental conditions and against non-substrate compounds is one of the main reasons for their limited use. The gene (mco) encoding multicopper oxidase from Bacillus mojavensis TH309 were cloned into pET14b( +), expressed in Escherichia coli, and purified as histidine tagged enzyme (BmLMCO). The molecular weight of the enzyme was about 60 kDa. The enzyme exhibited laccase-like activity toward 2,6-dimethoxyphenol (2,6-DMP), syringaldazine (SGZ), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The highest enzyme activity was recorded at 80 °C and pH 8. BmLMCO showed a half-life of ~ 305, 99, 50, 46, 36, and 20 min at 40, 50, 60, 70, 80, and 90 °C, respectively. It retained more than 60% of its activity after pre-incubation in the range of pH 5-12 for 60 min. The enzyme activity significantly increased in the presence of 1 mM of Cu2+. Moreover, BmLMCO tolerated various chemicals and showed excellent compatibility with organic solvents. The Michaelis constant (Km) and the maximum velocity (Vmax) values of BmLMCO were 0.98 mM and 93.45 µmol/min, respectively, with 2,6-DMP as the substrate. BmLMCO reduced the antibacterial activity of cefprozil, gentamycin, and erythromycin by 72.3 ± 1.5%, 79.6 ± 6.4%, and 19.7 ± 4.1%, respectively. This is the first revealing shows the recombinant production of laccase-like multicopper oxidase from any B. mojavensis strains, its biochemical properties, and potential for use in bioremediation.


Subject(s)
Anti-Bacterial Agents , Laccase , Laccase/genetics , Laccase/metabolism , Anti-Bacterial Agents/pharmacology , Cloning, Molecular , Substrate Specificity , Hydrogen-Ion Concentration , Enzyme Stability
13.
Environ Res ; 226: 115715, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36934862

ABSTRACT

Corncob (CC) is an industrial biological waste that is generated in significant quantities, and converting such biological wastes into value-added hydrochars through a viable process such as hydrothermal carbonization can provide significant benefits. It is of great importance to ensure eco-friendly and appropriate methods that are suitable for the area where the hydrochar will be used. This study aimed to synthesize hydrochars from a solid food waste, CC, using two different hydrothermal carbonization methods based on microwave-assisted (MHC) and subcritical water (SHC) using them as a biosorbent for NH4+ adsorption from water and characterizing their specific features. Hydrochars were synthesized in 1 h at 180 °C and 240 °C by MHC and SHC methods, respectively. Hydrochars synthesized by MHC and SHC methods were characterized by SEM-EDX, N2 adsorption-desorption isotherms, and FT-IR analyses. According to the EDX results, the C/O ratio (atomic %) in MHC and SHC was determined to be 0.55 and 0.35, respectively. Nitrogen adsorption-desorption isotherms revealed that hydrochars obtained by both methods have three distinct pore types, namely, micro, meso, and macro. In the energy consumption per unit adsorbent, a lower value was obtained for MHC than SHC. NH4+ adsorption using MHC and SHC was found to be compatible with the Langmuir isotherm model and the NH4+ adsorption capacities were 13.09 and 10.54 mg/g, respectively. pH was the most effective variable on hydrochars in the NH4+ adsorption based on the response surface method (RSM), and the highest adsorption occurred at pH 6.5 and 40 mg/L of initial NH4+ concentration, using 1.5 g/L of adsorbent at 35 °C. The results revealed that MHC is a unique method that can be used for hydrochars derived from CC in NH4+ adsorption, and MHC is more cost-effective than SHC in hydrochar production.


Subject(s)
Food , Refuse Disposal , Zea mays , Microwaves , Water , Spectroscopy, Fourier Transform Infrared , Adsorption , Carbon
14.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770670

ABSTRACT

In this article, studies on organic solubility and stability in subcritical water reported during the past 25 years have been reviewed. Data on the solubility and decomposition of organic compounds in subcritical water, a green solvent, are needed in environmental remediation, chemistry, chemical engineering, medicine, polymer, food, agriculture, and many other fields. For solubility studies, the experimental systems used to measure solubility, mathematical equations derived and applied for the modeling of the experimentally determined solubility data, and the correlation between the predicated and experimental data have been summarized and discussed. This paper also reviewed organic decomposition under subcritical water conditions. In general, the solubility of organics is significantly enhanced with increasing water temperature. Likewise, the percentage of organic decomposition also increases with higher temperature.

15.
Int J Environ Health Res ; 33(2): 158-169, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34889124

ABSTRACT

The demand for natural agents instead of chemicals in terms of food and health safety is increasing day by day. This study aimed to investigate the potential of the methanolic extract of Cuminum cyminum (C. cyminum) in the fight against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus)and Candida (C. albicans). The chemical composition of the methanolic extract of C. cyminum was analyzed using GS-MS. Also, Kováts retention indices were calculated for the detected compounds using an applicable formula. The most basic substance was cuminic aldehyde (27.86%) and p-(Dimethoxymethyl)-isopropylbenze (18.32%). The Minimum Inhibitory Concentration (MIC) of the extract was 0.1 g/mL for S. aureus and C. albicans while it was > 0.1 for E. coli. Although the methanol extract of C. cyminum acts against all three microorganisms, the most lasting effect was on S. aureus, indicating that it can be recommended as a strong antibacterial disinfectant for S. aureus.


Subject(s)
Cuminum , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Cuminum/chemistry , Escherichia coli , Staphylococcus aureus , Plant Extracts/pharmacology , Microbial Sensitivity Tests
16.
Int J Environ Health Res ; 33(9): 894-910, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35414316

ABSTRACT

In this study, the potential of aromatic Origanum species belonging to Lamiaceae family to prevent and treat cancer was investigated. Since aromatic plants contain phytochemicals such as essential oils, phenolic acids, terpenoids, flavonoids, alkaloids, vitamins, enzymes and minerals with beneficial biological activities, they have become more interesting and important in medicine, pharmacy and industry. Publications/research between 1950 and 2022 were screened to investigate the effects of Origanum species on cancer, and the effects of their extracts and essential oils in cancer prevention and treatment. Essential phytochemicals found in plants provide efficacy in the prevention and treatment of many diseases. Besides, the essential oils found in these plant extracts are another reason that makes them important. Therefore, it is preferred in traditional medicine in the fight against many diseases as well as cancer. Essential oils of Origanum species mainly contain monoterpenes such as p-cymene, carvacrol, thymol and γ-terpinene. Since these compounds exhibit anticancer properties, Origanum species are becoming the plants of choice in the fight against cancer. In this context, Origanum majorana L. Origanum vulgare and Origanum munzurense are promising species, considering the composition of their extracts and essential oil.


Subject(s)
Neoplasms , Oils, Volatile , Origanum , Monoterpenes/chemistry , Monoterpenes/pharmacology , Neoplasms/drug therapy , Neoplasms/prevention & control , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Origanum/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Thymol/chemistry , Thymol/pharmacology , Humans
17.
Int J Environ Health Res ; 33(6): 600-608, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35188839

ABSTRACT

Origanum munzurense (O. munzurense) is an endemic species of Tunceli region of Turkey. In this study, we investigated in vitro anticancer effect of aqueous extract of O. munzurense (OME) on breast cancer cells (MCF-7). In vitro cytotoxic effect of OME was evaluated in MCF-7 cells by MTT assay. The wound-healing assay was used to examine the inhibition of migration. Annexin V/propidium iodide staining, cell-cycle distribution was assessed by flow cytometry for MCF-7 cells treated with OME. MTT results show that OME demonstrated in vitro cytotoxicity with 600 mg at 48 h on MCF-7. Doses of 400 µg/mL and 600 µg/mL OME significantly suppressed the migration rate of MCF-7 cells. OME significantly decreased the percentage of live cancer cells and showed an apoptotic effect after 48 h of incubation. These results show that OME is effective against breast cancer when administered at high doses and for a long time.


Subject(s)
Breast Neoplasms , Origanum , Humans , Female , MCF-7 Cells , Breast Neoplasms/drug therapy , Plant Extracts/pharmacology , Apoptosis
18.
Int J Environ Health Res ; 33(12): 1341-1356, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35723173

ABSTRACT

In this work, the essential oil of Pimpinella anisum seeds was obtained by six different extraction methods. In the chemical composition analysis, 4, 6, 4, 1, 20, and 8 compounds were detected in the extracts obtained by Soxhlet, Ultrasonic-assisted (UAE), hydrodistillation using Clevenger apparatus (HDC), subcritical water extraction (SWE), supercritical carbon dioxide extraction (ScCO2) using three solvents (methanol (ScCO2-Met), ethanol (ScCO2-Et), and hexane (ScCO2-H)) and supercritical 1,1,1,2-tetrafluoroethane (ScR134a) methods, respectively. Also, the performances of the applied methods were compared by analysing the total phenolic content (TPC) and antioxidant activity of the extracts. Anethole was the main component of all extracts obtained by SWE (94.5%) and Soxhlet (94.5%) methods, respectively. Also, TPC values were the highest (508.5 mg GAE/100 g kb) in ScR134a extract and the lowest (27.77 mg GAE/100 g kb) in HDC extracts. The antioxidant capacity was found to be the highest in ScCO2-H (IC50 = 1.58 mg/mL) and the lowest in Soxhlet extracts (IC50 = 0.07 mg/mL). The results showed the great effectiveness of eco-friendly extraction SWE, ScCO2-Et, and ScR134a methods.


Subject(s)
Oils, Volatile , Pimpinella , Antioxidants/analysis , Pimpinella/chemistry , Phenols/analysis , Oils, Volatile/chemistry , Solvents , Water , Plant Extracts/chemistry
19.
Environ Res ; 216(Pt 1): 114357, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36122703

ABSTRACT

The use of synthetic dyes in the textile industry pollutes a huge amount of water. Thus, wastewater discharged from many textile companies to the receiving environment without being treated causes serious environmental and human health problems. The development of new techniques has become imperative. In this study, it was aimed to remove anionic dye (RR180) and cationic dye (BR18) by Fenton-like and adsorption process with hydrochars obtained from laurel leaves and watermelon peels. In the comparison of the adsorption and Fenton-like processes used in the dye removal of the produced bio-based materials, the Fenton-like process was selected in order to enhance the highest removal efficiency. The effects of various operating factors such as solution pH, amount of catalysts, hydrogen peroxide (H2O2) concentration, and initial dye concentration were evaluated on both dyes removal. The experimental results demonstrated that 99.8% RR180 dye and 98.8% BR18 dye removal efficiency were observed for an initial dye concentration of 100 mg/L with an adsorbent concentration of 1 g/L, H2O2 concentration of 15 µL/L, and optimum pH at the end of 60 min of reaction time. It was observed that an increase in initial dye concentration caused to decrease the dye removal efficiency. The optimum pH for the highest RR180 and BR18 dye removal was 4 and 6, respectively. It was observed that the increase in H2O2 concentration in the solution also decreased the dye removal efficiency. It turned out that catalysts obtained from hydrochars are an effective process for the high removal performance of cationic and anionic dyes.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Coloring Agents , Hydrogen Peroxide , Waste Disposal, Fluid/methods , Water Purification/methods , Wastewater
20.
Int J Environ Health Res ; : 1-13, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36201749

ABSTRACT

Owing to the importance of drug delivery, the synthesis of advanced nanomaterials for targeted drug delivery plays a considerable role in medical treatment. One of the most prominent nanomaterials is PIL, which is used as controlled anticancer drug delivery and significantly improves the half-life and antitumor effect. In this study, a stable and effective drug carrier containing silver nanoparticles was reported for the drug delivery with an antimicrobial effect, and the capability of the drug carrier . PILP was synthesized by radical polymerization, and silver nanoparticles were anchored into PIL voids by in-situ reduction, which developed the adsorption antimicrobial effect and capability of the drug carrier. The synthesized nanocomposite was characterized. The Ag-PILP nanocomposite showed antibacterial activityagainst both E. coli and S. aureus with a MIC of 256 µg/mL, and bactericidal activity against E. coli and S. aureus strains with a MBC of 256 and 512 µg/mL, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL