Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Craniofac Surg ; 35(4): 1292-1297, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829148

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) risk correlates with C-reactive protein (CRP) levels, suggesting systemic inflammation is present well before AMI. Studying different types of periodontal disease (PD), extremely common in individuals at risk for AMI, has been one important research topic. According to recent research, AMI and PD interact via the systemic production of certain proinflammatory and anti-inflammatory cytokines, small signal molecules, and enzymes that control the onset and development of both disorders' chronic inflammatory reactions. This study uses machine learning to identify the interactome hub biomarker genes in acute myocardial infarction and periodontitis. METHODS: GSE208194 and GSE222883 were chosen for our research after a thorough search using keywords related to the study's goal from the gene expression omnibus (GEO) datasets. DEGs were identified from the GEOR tool, and the hub gene was identified using Cytoscape-cytohubba. Using expression values, Random Forest, Adaptive Boosting, and Naive Bayes, widgets-generated transcriptomics data, were labelled, and divided into 80/20 training and testing data with cross-validation. ROC curve, confusion matrix, and AUC were determined. In addition, Functional Enrichment Analysis of Differentially Expressed Gene analysis was performed. RESULTS: Random Forest, AdaBoost, and Naive Bayes models with 99%, 100%, and 75% AUC, respectively. Compared to RF, AdaBoost, and NB classification models, AdaBoost had the highest AUC. Categorization algorithms may be better predictors than important biomarkers. CONCLUSIONS: Machine learning model predicts hub and non-hub genes from genomic datasets with periodontitis and acute myocardial infarction.


Subject(s)
Machine Learning , Myocardial Infarction , Periodontitis , Humans , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Periodontitis/genetics , Periodontitis/metabolism , Biomarkers/metabolism , Gene Expression Profiling , Bayes Theorem , Transcriptome/genetics
3.
Cureus ; 16(4): e58934, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38800307

ABSTRACT

Background and aim Orofacial neuropathic pain is a medical condition caused by a lesion or dysfunction of the nervous system and is one of the most challenging for dental clinicians to diagnose. Anticonvulsants, antidepressants, analgesics, nonsteroidal anti-inflammatory drugs, and other classes of medications are frequently used to treat this condition. Our study aimed to build a machine learning-based classifier to predict the need for anticonvulsant drugs in patients with orofacial neuropathic pain. Materials and methods A machine learning tool that was trained and tested on patients for predicting and detecting algorithms, which would in turn predict the need for anticonvulsants in the treatment of orofacial neuropathic pain, was employed in this study. Results Three machine learning algorithms successfully detected and predicted the need for anticonvulsants to treat patients with orofacial neuropathic pain. All three models showed a high accuracy, that is, 97%, 94%, and 89%, in predicting the need for anticonvulsants. Conclusion Machine learning algorithms can accurately predict the need for anticonvulsant drugs for treating orofacial neuropathic pain. Further research is needed to validate these findings using larger sample sizes and imaging modalities.

4.
J Oral Biol Craniofac Res ; 14(3): 335-338, 2024.
Article in English | MEDLINE | ID: mdl-38680473

ABSTRACT

The P2X7 receptor, a member of the P2X receptor family, plays a crucial role in various physiological processes, particularly pain perception. Its expression across immune, neuronal, and glial cells facilitates the release of pro-inflammatory molecules, thereby influencing pain development and maintenance, as evidenced by its association with pulpitis in rats. Notably, P2X receptors such as P2X3 and P2X7 are pivotal in dental pain pathways, making them promising targets for novel analgesic interventions. Leveraging graph neural networks (GNNs) presents an innovative approach to model graph data, aiding in the identification of drug targets and prediction of their efficacy, complementing advancements in genomics and proteomics for therapeutic development. In this study, 921 drug-gene interactions involving P2X receptors were accessed through https://www.probes-drugs.org/. These interactions underwent meticulous annotation, preprocessing, and subsequent utilization to train and assess GNNs. Furthermore, leveraging Cytoscape, the CytoHubba plugin, and other bioinformatics tools, gene expression networks were constructed to pinpoint hub genes within these interactions. Through analysis, SLC6A3, SLC6A2, FGF1, GRK2, and PLA2G2A were identified as central hub genes within the context of P2X receptor-mediated drug-gene interactions. Despite achieving a 65 percent accuracy rate, the GNN model demonstrated suboptimal predictive power for gene-drug interactions associated with oral pain. Hence, further refinements and enhancements are imperative to unlock its full potential in elucidating and targeting pathways underlying oral pain mechanisms.

5.
BMC Oral Health ; 24(1): 385, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532421

ABSTRACT

BACKGROUND AND OBJECTIVE: In recent years, the complex interplay between systemic health and oral well-being has emerged as a focal point for researchers and healthcare practitioners. Among the several important connections, the convergence of Type 2 Diabetes Mellitus (T2DM), dyslipidemia, chronic periodontitis, and peripheral blood mononuclear cells (PBMCs) is a remarkable example. These components collectively contribute to a network of interactions that extends beyond their domains, underscoring the intricate nature of human health. In the current study, bioinformatics analysis was utilized to predict the interactomic hub genes involved in type 2 diabetes mellitus (T2DM), dyslipidemia, and periodontitis and their relationships to peripheral blood mononuclear cells (PBMC) by machine learning algorithms. MATERIALS AND METHODS: Gene Expression Omnibus datasets were utilized to identify the genes linked to type 2 diabetes mellitus(T2DM), dyslipidemia, and Periodontitis (GSE156993).Gene Ontology (G.O.) Enrichr, Genemania, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used for analysis for identification and functionalities of hub genes. The expression of hub D.E.G.s was confirmed, and an orange machine learning tool was used to predict the hub genes. RESULT: The decision tree, AdaBoost, and Random Forest had an A.U.C. of 0.982, 1.000, and 0.991 in the R.O.C. curve. The AdaBoost model showed an accuracy of (1.000). The findings imply that the AdaBoost model showed a good predictive value and may support the clinical evaluation and assist in accurately detecting periodontitis associated with T2DM and dyslipidemia. Moreover, the genes with p-value < 0.05 and A.U.C.>0.90, which showed excellent predictive value, were thus considered hub genes. CONCLUSION: The hub genes and the D.E.G.s identified in the present study contribute immensely to the fundamentals of the molecular mechanisms occurring in the PBMC associated with the progression of periodontitis in the presence of T2DM and dyslipidemia. They may be considered potential biomarkers and offer novel therapeutic strategies for chronic inflammatory diseases.


Subject(s)
Chronic Periodontitis , Diabetes Mellitus, Type 2 , Dyslipidemias , Humans , Leukocytes, Mononuclear , Algorithms , Computational Biology , Gene Expression Profiling
6.
BMC Oral Health ; 24(1): 349, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504227

ABSTRACT

BACKGROUND AND INTRODUCTION: Statisticians rank oral and lip cancer sixth in global mortality at 10.2%. Mouth opening and swallowing are challenging. Hence, most oral cancer patients only report later stages. They worry about surviving cancer and receiving therapy. Oral cancer severely affects QOL. QOL is affected by risk factors, disease site, and treatment. Using oral cancer patient questionnaires, we use light gradient Boost Tree classifiers to predict life quality. METHODS: DIAS records were used for 111 oral cancer patients. The European Organisation for Research and Treatment of Cancer's QLQ-C30 and QLQ-HN43 were used to document the findings. Anyone could enroll, regardless of gender or age. The IHEC/SDC/PhD/OPATH-1954/19/TH-001 Institutional Ethical Clearance Committee approved this work. After informed consent, patients received the EORTC QLQ-C30 and QLQ-HN43 questionnaires. Surveys were in Tamil and English. Overall, QOL ratings covered several domains. We obtained patient demographics, case history, and therapy information from our DIAS (Dental Information Archival Software). Enrolled patients were monitored for at least a year. After one year, the EORTC questionnaire was retaken, and scores were recorded. This prospective analytical exploratory study at Saveetha Dental College, Chennai, India, examined QOL at diagnosis and at least 12 months after primary therapy in patients with histopathologically diagnosed oral malignancies. We measured oral cancer patients' quality of life using data preprocessing, feature selection, and model construction. A confusion matrix was created using light gradient boosting to measure accuracy. RESULTS: Light gradient boosting predicted cancer patients' quality of life with 96% accuracy and 0.20 log loss. CONCLUSION: Oral surgeons and oncologists can improve planning and therapy with this prediction model.


Subject(s)
Lip Neoplasms , Mouth Neoplasms , Humans , Quality of Life , Prospective Studies , India , Mouth Neoplasms/therapy , Surveys and Questionnaires
7.
Technol Health Care ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38393867

ABSTRACT

BACKGROUND: Titanium nanoparticles (NPs) offer promising applications in the treatment and prevention of inflammatory disorders due to their unique physicochemical characteristics. However, additional research is necessary to attain a thorough comprehension and validate the efficacy of this approach in dental practice. OBJECTIVE: This study scrutinizes the anti-inflammatory properties of a dental varnish infused with ginger and rosemary extracts mediated by titanium dioxide (TiO2) nanoparticles. METHODS: A herbal dental varnish was formulated by integrating ginger and rosemary extracts with titanium dioxide nanoparticles at concentrations of 10, 20, 30, 40, and 50 µL. Anti-inflammatory properties were assessed through Bovine Serum Albumin denaturation and membrane stabilization assays, comparing results with a control group. RESULTS: The results reveal concentration-dependent antioxidant and anti-inflammatory properties in the test group when compared to the control group. The BSA assay corroborates increased percent inhibition with rising titanium dioxide nanoparticle concentrations. In line with existing literature, titanium dioxide nanoparticles enhance dental material properties. CONCLUSION: The bioactive compounds in ginger and rosemary, such as phenolic compounds and terpenes, contribute to anti-inflammatory and antioxidant effects of the varnish. Additionally, the therapeutic potential of titanium dioxide nanoparticles in addressing inflammatory diseases underscores their significance in this formulation.

8.
Cureus ; 15(11): e49541, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38156132

ABSTRACT

Background Eagle's syndrome is characterized by the anomalous elongation of the styloid process. This condition is usually identified through the manual evaluation of orthopantomogram (OPG) images, which is time-consuming and can have interobserver variability. The application of Artificial intelligence (AI) in radiology is gaining importance and interest in recent years. The application of AI in detecting styloid process elongation is less explored, advocating for research in the same arena. Aim and objectives The study aimed to evaluate the accuracy of artificial intelligence in detecting styloid process elongation in digital OPGs and to compare the performance of the three different AI algorithms with that of the manual radiographic evaluation by the radiologist. Materials and methods A total of 400 digital OPGs were screened, and linear measurements of the styloid process length (ImageJ software (National Institute of Health, Maryland, USA)) were done for the identification of styloid process elongation by a single calibrated observer to finally include a processed image dataset including 169 images of the elongated styloid process and 200 images of the normal styloid process. A machine learning approach was used to detect the styloid process elongation using the three different AI models: logistic regression, neural network, and Naïve Bayes algorithms in Orange software (University of Ljubljana, Slovenia). Performance evaluation was done using the accuracy, sensitivity, specificity, precision, recall, F1 score, and AUC-ROC (area under the receiver operating characteristic) curve. Results Logistic regression and neural network algorithms depicted the highest accuracy of 100% with no false positives or false negatives, securing a score of 1.000 for all the metrics. However, the Naïve Bayes model demonstrated a fairly considerable accuracy, classifying 49 false positive images and 59 false negative images with an AUC (area under the curve) score of 78 %. Nevertheless, it performed better than random guessing. Conclusion Logistic regression and neural network algorithms accurately detected styloid process elongation similar to that of manual radiographic evaluation. The Naïve Bayes algorithm did not perform an accurate classification yet performed better than random guessing. AI holds a promising scope for its application in automatically detecting styloid process elongation in digital OPGs.

9.
BMC Oral Health ; 23(1): 833, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932703

ABSTRACT

BACKGROUND AND OBJECTIVE: Dental panoramic radiographs are utilized in computer-aided image analysis, which detects abnormal tissue masses by analyzing the produced image capacity to recognize patterns of intensity fluctuations. This is done to reduce the need for invasive biopsies for arriving to a diagnosis. The aim of the current study was to examine and compare the accuracy of several texture analysis techniques, such as Grey Level Run Length Matrix (GLRLM), Grey Level Co-occurrence Matrix (GLCM), and wavelet analysis in recognizing dental cyst, tumor, and abscess lesions. MATERIALS & METHODS: The current retrospective study retrieved a total of 172 dental panoramic radiographs with lesion including dental cysts, tumors, or abscess. Radiographs that failed to meet technical criteria for diagnostic quality (such as significant overlap of teeth, a diffuse image, or distortion) were excluded from the sample. The methodology adopted in the study comprised of five stages. At first, the radiographs are improved, and the area of interest was segmented manually. A variety of feature extraction techniques, such GLCM, GLRLM, and the wavelet analysis were used to gather information from the area of interest. Later, the lesions were classified as a cyst, tumor, abscess, or using a support vector machine (SVM) classifier. Eventually, the data was transferred into a Microsoft Excel spreadsheet and statistical package for social sciences (SPSS) (version 21) was used to conduct the statistical analysis. Initially descriptive statistics were computed. For inferential analysis, statistical significance was determined by a p value < 0.05. The sensitivity, specificity, and accuracy were used to find the significant difference between assessed and actual diagnosis. RESULTS: The findings demonstrate that 98% accuracy was achieved using GLCM, 91% accuracy using Wavelet analysis & 95% accuracy using GLRLM in distinguishing between dental cyst, tumor, and abscess lesions. The area under curve (AUC) number indicates that GLCM achieves a high degree of accuracy. The results achieved excellent accuracy (98%) using GLCM. CONCLUSION: The GLCM features can be used for further research. After improving the performance and training, it can support routine histological diagnosis and can assist the clinicians in arriving at accurate and spontaneous treatment plans.


Subject(s)
Abscess , Cysts , Humans , Retrospective Studies , Machine Learning
10.
BMC Oral Health ; 23(1): 810, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898802

ABSTRACT

BACKGROUND: The purpose of this study was to evaluate remineralisation and its effect on microtensile bond-strength of artificially induced caries affected dentin (CAD) when treated with a commercial universal adhesive modified with poly(amidoamine) dendrimer (PAMAM) loaded mesoporous bioactive glass nanoparticles (A-PMBG). MATERIAL AND METHODS: Mesoporous bioactive glass nanoparticles (MBG) were synthesised using sol-gel process, where PAMAM was loaded (P-MBG) and added to commercial adhesive at different weight percentages (0.2, 0.5, 1 and 2 wt%). First, rheological properties of commercial and modified adhesives were evaluated. The effect of remineralization/hardness and microtensile bond-strength (MTBs) of those samples that mimicked the rheological properties of commercial adhesives were evaluated using Vickers hardness tester and universal testing machine respectively. Scanning-Electron microscope was used to visualize failed samples of MTBs and remineralization samples. Both evaluations were carried out at 1-,3 and 6-month intervals, samples being stored in stimulated salivary fluid during each time interval. RESULTS: Addition of nanoparticles altered the rheological properties. With increase in the weight percentage of nanoparticles in commercial adhesive, there was significant increase in degree of conversion, viscosity and sedimentation rate (p < 0.05). The 0.2 and 0.5 wgt% groups closely mimicked the properties of commercial adhesive and were evaluated for remineralization and MTBs. After 6 months, 0.2wgt% group showed increased MTBs (p < 0.05) and 0.5wgt% group increased remineralization/hardness (p < 0.05). CONCLUSION: The complex of PAMAM-MBG-Universal adhesive can remineralize the demineralised CAD thereby improving its bond-strength when evaluated for up to 6-months.


Subject(s)
Dental Bonding , Dental Caries , Nanoparticles , Humans , Dental Cements/therapeutic use , Dental Caries Susceptibility , Dentin , Nanoparticles/therapeutic use , Dental Caries/therapy , Tensile Strength , Materials Testing , Resin Cements/therapeutic use
12.
Microorganisms ; 11(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630620

ABSTRACT

Periodontal diseases are polymicrobial immune-inflammatory diseases that can severely destroy tooth-supporting structures. The critical bacteria responsible for this destruction include red complex bacteria such as Porphoromonas gingivalis, Tanerella forsythia and Treponema denticola. These organisms have developed adaptive immune mechanisms against bacteriophages/viruses, plasmids and transposons through clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas). The CRISPR-Cas system contributes to adaptive immunity, and this acquired genetic immune system of bacteria may contribute to moderating the microbiome of chronic periodontitis. The current research examined the role of the CRISPR-Cas system of red complex bacteria in the dysbiosis of oral bacteriophages in periodontitis. Whole-genome sequences of red complex bacteria were obtained and investigated for CRISPR using the CRISPR identification tool. Repeated spacer sequences were analyzed for homologous sequences in the bacteriophage genome and viromes using BLAST algorithms. The results of the BLAST spacer analysis for T. denticola spacers had a 100% score (e value with a bacillus phage), and the results for T. forsthyia and P. gingivalis had a 56% score with a pectophage and cellulophage (e value: 0.21), respectively. The machine learning model of the identified red complex CRISPR sequences predicts with area an under the curve (AUC) accuracy of 100 percent, indicating phage inhibition. These results infer that red complex bacteria could significantly inhibit viruses and phages with CRISPR immune sequences. Therefore, the role of viruses and bacteriophages in modulating sub-gingival bacterial growth in periodontitis is limited or questionable.

13.
Bioinform Biol Insights ; 17: 11779322231182767, 2023.
Article in English | MEDLINE | ID: mdl-37377794

ABSTRACT

Aim: Antibiotics treat various diseases by targeting microorganisms by killing them or reducing their multiplication rate. New Delhi Metallo-beta-lactamase-1 (NDM-1) is produced by bacteria possessing the resistance gene blaNDM-1, the enzyme that makes bacteria resistant to beta-lactams. Bacteriophages, especially Lactococcus, have shown their ability to break down lactams. Hence, the current study computationally evaluated the binding potential of Lactococcus bacteriophages with NDM using Molecular docking and dynamics. Methods: Modelling of NDM I-TASSER for Main tail protein gp19 OS=Lactococcus phage LL-H or Lactobacillus delbrueckii subsp. lactis after downloading from UNIPROT ID- Q38344. Cluspro tool helps in Understanding cellular function and organization with protein-protein interactions. MD simulations(19) typically compute atom movements over time. Simulations were used to predict the ligand binding status in the physiological environment. Results: The best binding affinity score was found -1040.6 Kcal/mol compared to other docking scores. MD simulations show in RMSD values for target remains within 1.0 Angstrom, which is acceptable. The ligand-protein fit to receptor protein RMSD values of 2.752 fluctuates within 1.5 Angstrom after equilibration. Conclusions: Lactococcus bacteriophages showed a strong affinity to the NDM. Hence, this hypothesis, supported by evidence from a computational approach, will solve this life-threatening superbug problem.

14.
Medicina (Kaunas) ; 59(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36837503

ABSTRACT

Background and Objectives: Periodontitis is a chronic multifactorial inflammatory infectious disease marked by continuous degradation of teeth and surrounding parts. One of the most important periodontal pathogens is P. intermedia, and with its interpain A proteinase, it leads to an increase in lethal infection. Materials and Methods: The current study was designed to create a multi-epitope vaccine using an immunoinformatics method that targets the interpain A of P. intermedia. For the development of vaccines, P. intermedia peptides InpA were found appropriate. To create a multi-epitope vaccination design, interpain A, B, and T-cell epitopes were found and assessed depending on the essential variables. The vaccine construct was evaluated based on its stability, antigenicity, and allergenicity. Results: The vaccine construct reached a more significant population and was able to bind to both the binding epitopes of major histocompatibility complex (MHC)-I and MHC-II. Through the C3 receptor complex route, P. intermedia InpA promotes an immunological subunit. Utilizing InpA-C3 and vaccination epitopes as the receptor and ligand, the molecular docking and dynamics were performed using the ClusPro 2.0 server. Conclusion: The developed vaccine had shown good antigenicity, solubility, and stability. Molecular docking indicated the vaccine's 3D structure interacts strongly with the complement C3. The current study describes the design for vaccine, and steady interaction with the C3 immunological receptor to induce a good memory and an adaptive immune response against Interpain A of P. intermedia.


Subject(s)
Vaccines , Humans , Molecular Docking Simulation , Prevotella intermedia , Epitopes, T-Lymphocyte
15.
J Infect Public Health ; 16(1): 117-124, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36512968

ABSTRACT

BACKGROUND: Mucormycosis is an infection caused by fungi belonging to the order Mucorales. Rhizopus oryzae is one of the most prevalent organisms identified in mucormycosis patients. Because it spreads quickly through the blood vessels, this opportunistic illness has an exceptionally high fatality rate, even when vigorous treatment is administered. Nonetheless, it has a high tolerance to antifungal medicines, limiting treatment options. As a result, improved methods for preventing and treating mucormycosis are desperately needed. Hence, this study was aimed at assessing the effect of lupeol, quercetin, and solasodine against mucormycosis based on computational approaches. METHODS: The Rhizopus oryzae RNA-dependent RNA polymerase (RdRp) was the target for the design of drugs against the deadly mucormycosis. The three-dimensional structure of the RdRp was modelled with a Swiss model and validated using PROCHECK, VERIFY 3D, and QMEAN. Using the Schrodinger maestro module, a molecular docking study was performed between RdRp and the antimicrobial phytochemicals lupeol, quercetin, and solasodine. A molecular dynamics (MD) simulation study was used to assess the stability and interaction of the RdRp with these phytochemicals. RESULTS: The RdRp protein binds strongly to lupeol (-7.2 kcal/mol), quercetin (-9.1 kcal/mol), and solasodine (-9.6 kcal/mol), according to molecular docking assessment based on the lowest binding energy, confirmation, and bond interaction. Simulations suggest that lupeol, quercetin, and solasodine complexes with RdRp and showed stable confirmation with minimal fluctuation throughout the 200 nanoseconds based on the RMSD and RMSF trajectory assessments. CONCLUSION: The molecular docking and MD simulation investigation improved our understanding of phytochemical-RdRp interactions. Due to its high affinity for RdRp, solasodine may be a better treatment option for mucormycosis.


Subject(s)
Mucormycosis , Humans , Mucormycosis/drug therapy , Rhizopus/genetics , Rhizopus oryzae , Molecular Docking Simulation , Quercetin/pharmacology , Quercetin/therapeutic use , RNA-Dependent RNA Polymerase
16.
Dis Mon ; 69(1): 101350, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35337656

ABSTRACT

Immunological disorders are observed in various clinical presentations in the oral cavity. The pathophysiology of these disorders include but are not limited to primary oral auto-immune disease, systemic disease with oral findings, malignancies, hypersensitivity reactions, drug-induced, and infection-related. Many of these disorders have overlapping oral features, making it difficult for the clinician to diagnose and treat the disorder. There is a need to provide a simple and practical decision-making algorithm to the clinicians and provide them guidance on laboratory investigations. The present review provides a diagnostic algorithm that might minimize outpatient process delays and lead to early management. This is crucial in many cases where oral findings may be the first sign of the disorder, and early treatment can preclude dissemination and complications of the disorder.


Subject(s)
Immune System Diseases , Mouth Diseases , Humans , Mouth Diseases/diagnosis , Mouth Diseases/therapy , Immune System Diseases/diagnosis
17.
Dis Mon ; 69(1): 101349, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35337657

ABSTRACT

A group of oral disorders or conditions, which may result from, or could be triggered by an abnormality in the normal immune response of an individual are known as oral immune-mediated disorders. Some of these disorders have malignant potential, while others are associated with malignancy. In this overview, we will discuss a few of the oral diseases (such as oral lichen planus, primary Sjogren's syndrome, systemic lupus erythematosus, dermatitis herpetiformis, and linear immunoglobulin A bullous dermatosis, to name a few), which are caused due to irregularity in the immune system and are either associated with malignancy or capable of undergoing malignant transforming, thereby increasing the morbidity and mortality rate.


Subject(s)
Lupus Erythematosus, Systemic , Mouth Diseases , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/pathology , Mouth Diseases/complications
18.
Dis Mon ; 69(1): 101352, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35339251

ABSTRACT

BACKGROUND: Immune-mediated diseases are a diverse group of conditions characterized by alteration of cellular homeostasis and inflammation triggered by dysregulation of the normal immune response. Several immune-mediated diseases exhibit oral signs and symptoms. Traditionally, these conditions are treated with corticosteroids or immunosuppressive agents, including azathioprine, cyclophosphamide, and thalidomide. Recent research into the developmental pathways of these diseases has led to the exploration of novel approaches in treatment. This review examines newer treatment modalities for the management of immune-mediated diseases with oral presentations. Topical calcineurin inhibitors (TCIs) such as tacrolimus and pimecrolimus have been employed successfully in managing oral lichen planus and pemphigus vulgaris. Biologic agents, comprising monoclonal antibodies, fusion proteins, and recombinant cytokines, can provide targeted therapy with fewer adverse effects. Neutraceutical agents comprising aloe vera, curcumin, and honey are commonly used in traditional medicine and offer a holistic approach. They may have a place as adjuvants to current standard therapeutic protocols. Photodynamic therapy (PDT) and low-level laser therapy (LLLT) utilize a specific wavelength of light to achieve desired cellular change. While the use of PDT in immune-mediated diseases is contentious, LLLT has shown positive results. Newer therapeutic modalities involve kinase inhibitors, S1P1 receptor modulators, MSCs, and iRNA providing targeted treatment of specific diseases.


Subject(s)
Laser Therapy , Lichen Planus, Oral , Mouth Diseases , Humans , Calcineurin Inhibitors/therapeutic use , Mouth Diseases/drug therapy , Lichen Planus, Oral/drug therapy , Adrenal Cortex Hormones/therapeutic use , Administration, Topical
19.
Dis Mon ; 69(1): 101348, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35341589

ABSTRACT

Periodontitis, an inflammatory condition, is linked to a higher risk of developing oral cancer. Periodontitis may be a precipitating factor for tumorigenesis and the aggressiveness of specific cancer variants. Although genetics is considered the primary etiologic factor for the development of most cancers, many factors have come to be recognized in the initiation and progression of oral cancer. Consecutively, it is suggestive that periodontitis and oral cancer are distinct disease entities but share common pathogenic mechanisms. Oxidative stress and epigenetic mechanisms are among the most researched mechanisms responsible for initiating apoptotic mechanisms implicated in periodontitis and oral cancer. Current research aims to formulate therapeutic agents to intercede in these mechanisms via host modulation therapy and epigenetic therapy. These advances can revolutionize the treatment of periodontitis and oral cancer. This review aims to shed light on the common pathogenic mechanisms of these diseases and the various host modulation agents that could be beneficial in their treatment.


Subject(s)
Mouth Neoplasms , Periodontitis , Humans , Periodontitis/drug therapy , Mouth Neoplasms/drug therapy , Mouth Neoplasms/etiology
20.
J Biotechnol ; 360: 1-10, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36195207

ABSTRACT

Algae are effective predecessors of nutrient foods and preventive drugs, gaining global attraction in recent years. It exhibits potent antiviral, antibacterial, antifungal, anti-inflammatory, antioxidant, anti-glycemic, and cholesterol-lowering properties due to their richness in highly valuable secondary metabolites. Nevertheless, algae produce valuable bioproducts, its application in dentistry is in its primitive stage. This review focuses on the emergence and emerging role of micro/macroalgae as a natural source of therapeutic, preventive, and biocompatible agents in dentistry. Several studies unveiled that Cyanobacteria, Spirulina, and Chlorella species offer high oral antibacterial and antifungal properties compared to gold standard agents. The characteristic of algae to scavenge superoxide and hydroxyl free radicals, fabricate them as an anti-oxidative and anti-cancer agent. Either alone or by synergism with pinnacle therapies they are found to produce promising curative actions against periodontitis by embattling proinflammatory cytokines. Technologies extend the functions of microalgae as a detoxifying agent, potent drug delivery system, and adjunct regenerative material in chronic periodontitis. Its application as thickening, binding, anticariogenic agent in toothpaste, antibacterial agent in mouthwash, and biocompatible agent in dental impression materials remains very primitive. Low-cost and eco-friendly technologies are needed for the production of oral hygiene products using algal biomass.


Subject(s)
Chlorella
SELECTION OF CITATIONS
SEARCH DETAIL
...