Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(34): 13003-13014, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35968800

ABSTRACT

Four new functionalized Ni(II) dithiocarbamate complexes of the formula [Ni(Lx)2] (1-4) (L1 = N-methylthiophene-N-3-pyridylmethyl dithiocarbamate, L2 = N-methylthiophene-N-4-pyridylmethyl dithiocarbamate, L3 = N-benzyl-N-3-pyridylmethyl dithiocarbamate, and L4 = N-benzyl-N-4-pyridylmethyl dithiocarbamate) have been synthesized and characterized by IR, UV-vis, and 1H and 13C{1H} NMR spectroscopic techniques. The solid-state structure of complex 1 has also been determined by single crystal X-ray crystallography. Single crystal X-ray analysis revealed a monomeric centrosymmetric structure for complex 1 in which two dithiocarbamate ligands are bonded to the Ni(II) metal ion in a S^S chelating mode resulting in a square planar geometry around the nickel center. These complexes are immobilized on activated carbon cloth (CC) and their electrocatalytic performances for the oxygen evolution reaction (OER) have been investigated in aqueous alkaline solution. All the complexes act as pre-catalysts for the OER and undergo electrochemical anodic activation to form Ni(O)OH active catalysts. Spectroscopic and electrochemical characterization revealed the existence of the interface of molecular complex/Ni(O)OH, which acts as the real catalyst for the OER. The active catalyst obtained from complex 2 showed the best OER activity achieving 10 mA cm-2 current density at an overpotential of 330 mV in 1.0 M aqueous KOH solution.

2.
Inorg Chem ; 60(9): 6446-6462, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33881858

ABSTRACT

Four new mononuclear/coordination polymeric (CP) zinc(II) complexes (1-4) of ferrocenyl/pyridyl-functionalized dithiocarbamate ligands, N-ferrocenylmethyl-N-butyl dithiocarbamate (L1), N-ferrocenylmethyl-N-ethylmorpholine dithiocarbamate (L2), N-ferrocenylmethyl-N-2-(diethylamino)ethylamine dithiocarbamate (L3), and N-4-methoxybenzyl-N-3-methylpyridyl dithiocarbamate (L4), have been synthesized and characterized by elemental analyses, IR, UV-vis, and 1H and 13C{1H} NMR spectroscopic techniques. The solid-state structures of complexes 1, 3, and 4 have been determined by single-crystal X-ray crystallography as well as powder X-ray diffraction. Single-crystal X-ray crystallography revealed a monomeric structure for complex 1 but 1D polymeric structures for complexes 3 and 4. In all complexes, dithiocarbamate ligands are bonded to the Zn(II) metal ion in a S^S chelating mode, and in the CPs, N atoms on the 2-(diethylamino)ethylamine and 3-pyridyl functionalities in the ligands on the neighboring molecules are also bonded to metal centers, leading to the formation of either a discrete tetrahedral molecule in 1 or 1D CP structures in 3 and 4. The Zn(II) metal centers in the polymeric structures exhibited either square-pyramidal or octahedral geometries. The supramolecular structures in these complexes are sustained via C-H···π (ZnCS2, chelate; 3 and 4), C-H···π, and H···H interactions. The catalytic performances of complexes have also been assessed in the Knoevenagel condensation and one-pot multicomponent reactions. Catalysis results showed that the CP 3 acts as a heterogeneous bifunctional catalyst with excellent transformation efficiency at low catalyst loading.

3.
Inorg Chem ; 59(16): 11417-11431, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32799477

ABSTRACT

Five novel zinc(II) and cadmium(II) ß-oxodithioester complexes, [Zn(L1)2] (1), [Zn(L2)2]n (2), [Zn(L3)2]n (3) [Cd(L1)2]n (4), [Cd(L2)2]n (5), with ß-oxodithioester ligands, where L1 = 3-(methylthio)-1-(thiophen-2-yl)-3-thioxoprop-1-en-1-olate, L2 = 3-(methylthio)-1-(pyridin-3-yl)-3-thioxoprop-1-en-1-olate, and L3 = 3-(methylthio)-1-(pyridin-4-yl)-3-thioxoprop-1-en-1-olate, were synthesized and characterized by elemental analysis, IR, UV-vis, and NMR spectroscopy (1H and 13C{1H}). The solid-state structures of all complexes were ascertained by single-crystal X-ray crystallography. The ß-oxodithioester ligands are bonded to Zn(II)/Cd(II) metal ions in an O∧S and N chelating/chelating-bridging fashion leading to the formation of 1D (in 2-4) and 2D (in 5) coordination polymeric structures, but complex 1 was obtained as a discrete tetrahedral molecule. Complex 4 crystallizes in the C2 chiral space group and has been studied using circular dichroism (CD) spectroscopy. The multidimensional assemblies in these complexes are stabilized by many important noncovalent C-H···π (ZnOSC3, chelate), π···π, C-H···π, and H···H interactions. The catalytic activities of 1-5 in reactions involving C-C and C-O bond formation have been studied, and the results indicated that complex 3 can be efficiently utilized as a heterogeneous bifunctional catalyst for the Knoevenagel condensation and multicomponent reactions to develop biologically important organic molecules. The luminescent properties of complexes were also studied. Interestingly, zinc complexes 1-3 showed strong lumniscent emission in the solid state, whereas cadmium complexes 4 and 5 exhibited bright luminescent emission in the solution phase. The semiconducting behavior of the complexes was studied by solid-state diffuse reflectance spectra (DRS), which showed optical band gaps in the range of 2.49-2.62 eV.

4.
Dalton Trans ; 49(11): 3592-3605, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32129347

ABSTRACT

Four new heteroleptic Ni(ii) complexes with general formula [Ni(ii)(LL')] (L = 2-(methylene-1,1'-dithiolato)-5-phenylcyclohexane-1,3-dione (L1) and 2-(methylene-1,1'-dithiolato)-5,5'-dimethylcyclohexane-1,3-dione (L2); L' = 1,2-bis(diphenylphosphino)ethane (dppe) and bis(diphenylphosphino)monosulphide methane (dppms) have been synthesized and characterized by elemental analysis and spectroscopy (IR, UV-Vis, 1H, 13C{1H} and 31P{1H} NMR). All complexes 1-4 have also been characterized by PXRD and single crystal X-ray crystallography. The solid state molecular structures revealed distorted square planar geometry about the four-coordinate Ni(ii) metal centre together with rare NiH-C intra/intermolecular anagostic interactions in axial positions. In these complexes supramolecular structures have been sustained by non-covalent C-HO, C-OH-O, C-Hπ, C-Hπ (NiCS2, chelate), ππ and HH interactions. Their electrocatalytic properties have been investigated for oxygen evolution reaction (OER) in which complex 2 showed the highest activity with 10 mA cm-2 at the potential of 1.58 V vs. RHE. In addition, complex 2 also exhibits an OER onset potential at 1.52 V vs. RHE.

5.
Inorg Chem ; 58(21): 14449-14456, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31622087

ABSTRACT

A pair of enantiomeric tetrahedral complexes (Λ-[Zn(L)2] and Δ-[Zn(L)2]) comprised of the achiral ligand methyl-3-hydroxy-3-phenyl-2-propenedithioate (L) have been synthesized by spontaneous resolution. Two chiral inducers, viz., d-(-)- and l-(+)-tartaric and mandelic acids, have been employed to achieve bulk homochirality and extend the generality of the present work. The work highlights the achievement of bulk homochirality using readily available chiral inducers in the synthesis of a spontaneously resolving chiral tetrahedral zinc(II) complex using achiral starting materials. These findings are established by 30 sets of single-crystal X-ray diffraction data with refined Flack parameters and circular dichroism spectroscopy.

6.
Dalton Trans ; 47(45): 16264-16278, 2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30398281

ABSTRACT

Eight novel Tl(i) ß-oxodithioester complexes, [TlL]n (1-8), with ligands, L = methyl-3-hydroxy-3-(2-furyl)-2-propenedithioate (L1), methyl-3-hydroxy-3-(2-thienyl)-2-propenedithioate (L2), methyl-3-hydroxy-3-(3-pyridyl)-2-propenedithioate (L3), methyl-3-hydroxy-3-(4-pyridyl)-2-propenedithioate (L4), methyl-3-hydroxy-3-(9-anthracenyl)-2-propenedithioate (L5), methyl-3-hydroxy-3-(4-fluorophenyl)-2-propenedithioate (L6), methyl-3-hydroxy-3-(4-chlorophenyl)-2-propenedithioate (L7) and methyl-3-hydroxy-3-(4-bromophenyl)-2-propenedithioate (L8), were synthesized and thoroughly characterized by elemental analysis, and IR, UV-Vis, 1H and 13C{1H} NMR spectroscopy, and their structures were ascertained by X-ray crystallography. Complexes 1 and 2 crystallized in P21 and P212121 chiral space groups, respectively, and were studied using Circular Dichroism (CD) spectra. Solid state structural analyses revealed that the ß-oxodithioester ligands are bonded to Tl(i) ions in (O, S) chelating and chelating-bridging modes, thereby forming different types of 1D and 2D coordination polymeric structures. By considering the metal-assisted bonding interactions, various coordination numbers of 5-8 and 10 are established around the metal centre. Except for 5 and 7a which have TlTl separations at 3.724(1) and 3.767(1), 3.891(1) Å respectively, the remaining complexes have no TlTl distances <4.0 Å. This indicates that the majority of structures contain only weak inter- and intramolecular thallophilic interactions. The structures of 1-8 highlight the role played by variations in substituents in the dithioester unit in the structure and properties of the complexes. The multi-dimensional assembly in these complexes rests on important non-covalent C-Hπ (TlOSC3, chelate), C-HX (X = F, Cl, O, N), C-Hπ, HH and rare TlH-C intermolecular anagostic interactions. The TlH-C anagostic interactions together with C-OTl and C-STl interactions formed 7-, 11- and 12-membered chelate rings about the metal centers. The anagostic interactions in 1, 2 and 7b were assessed by theoretical calculations. All the complexes showed bright green luminescent emissions in solution and solid phases. Time-resolved emission spectra revealed a triexponential decay curve and short mean lifetime for fluorescence behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...