Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Front Genet ; 15: 1394091, 2024.
Article in English | MEDLINE | ID: mdl-38721472

ABSTRACT

Global climate change (GCC) is posing a serious threat to organisms, particularly plants, which are sessile. Drought, salinity, and the accumulation of heavy metals alter soil composition and have detrimental effects on crops and wild plants. The hormone auxin plays a pivotal role in the response to stress conditions through the fine regulation of plant growth. Hence, rapid, tight, and coordinated regulation of its concentration is achieved by auxin modulation at multiple levels. Beyond the structural enzymes involved in auxin biosynthesis, transport, and signal transduction, transcription factors (TFs) can finely and rapidly drive auxin response in specific tissues. Auxin Response Factors (ARFs) such as the ARF4, 7, 8, 19 and many other TF families, such as WRKY and MADS, have been identified to play a role in modulating various auxin-mediated responses in recent times. Here, we review the most relevant and recent literature on TFs associated with the regulation of the biosynthetic, transport, and signalling auxin pathways and miRNA-related feedback loops in response to major abiotic stresses. Knowledge of the specific role of TFs may be of utmost importance in counteracting the effects of GCC on future agriculture and may pave the way for increased plant resilience.

2.
Quant Plant Biol ; 4: e7, 2023.
Article in English | MEDLINE | ID: mdl-37529296

ABSTRACT

Pollen grains represent the male gametes of seed plants and their viability is critical for sexual reproduction in the plant life cycle. Palynology and viability studies have traditionally been used to address a range of botanical, ecological and geological questions, but recent work has revealed the importance of pollen viability in invasion biology as well. Here, we report an efficient visual method for assessing the viability of pollen using digital holographic microscopy (DHM). Imaging data reveal that quantitative phase information provided by the technique can be correlated with viability as indicated by the outcome of the colorimetric test. We successfully test this method on pollen grains of Lantana camara, a well-known alien invasive plant in the tropical world. Our results show that pollen viability may be assessed accurately without the usual staining procedure and suggest potential applications of the DHM methodology to a number of emerging areas in plant science.

3.
Comput Struct Biotechnol J ; 21: 3946-3963, 2023.
Article in English | MEDLINE | ID: mdl-37635766

ABSTRACT

The Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain represents an evolutionarily conserved superfamily of lipid transfer proteins widely distributed across the tree of life. Despite significant expansion in plants, knowledge about this domain remains inadequate in plants. In this work, we explore the role of cavity architectural modulations in START protein evolution and functional diversity. We use deep-learning approaches to generate plant START domain models, followed by surface accessibility studies and a comprehensive structural investigation of the rice START family. We validate 28 rice START domain models, delineate binding cavities, measure pocket volumes, and compare these with mammalian counterparts to understand evolution of binding preferences. Overall, plant START domains retain the ancestral α/ß helix-grip signature, but we find subtle variation in cavity architectures, resulting in significantly smaller ligand-binding tunnels in the plant kingdom. We identify cavity lining residues (CLRs) responsible for reduction in ancestral tunnel space, and these appear to be class specific, and unique to plants, providing a mechanism for the observed shift in domain function. For instance, mammalian cavity lining residues A135, G181 and A192 have evolved to larger CLRs across the plant kingdom, contributing to smaller sizes, minimal STARTs being the largest, while members of type-IV HD-Zip family show almost complete obliteration of lipid binding cavities, consistent with their present-day DNA binding functions. In summary, this work quantifies plant START structural & functional divergence, bridging current knowledge gaps.

4.
Nucleic Acids Res ; 50(8): 4630-4646, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35412622

ABSTRACT

Holliday junction is the key homologous recombination intermediate, resolved by structure-selective endonucleases (SSEs). SLX1 is the most promiscuous SSE of the GIY-YIG nuclease superfamily. In fungi and animals, SLX1 nuclease activity relies on a non-enzymatic partner, SLX4, but no SLX1-SLX4 like complex has ever been characterized in plants. Plants exhibit specialized DNA repair and recombination machinery. Based on sequence similarity with the GIY-YIG nuclease domain of SLX1 proteins from fungi and animals, At-HIGLE was identified to be a possible SLX1 like nuclease from plants. Here, we elucidated the crystal structure of the At-HIGLE nuclease domain from Arabidopsis thaliana, establishing it as a member of the SLX1-lineage of the GIY-YIG superfamily with structural changes in DNA interacting regions. We show that At-HIGLE can process branched-DNA molecules without an SLX4 like protein. Unlike fungal SLX1, At-HIGLE exists as a catalytically active homodimer capable of generating two coordinated nicks during HJ resolution. Truncating the extended C-terminal region of At-HIGLE increases its catalytic activity, changes the nicking pattern, and monomerizes At-HIGLE. Overall, we elucidated the first structure of a plant SLX1-lineage protein, showed its HJ resolving activity independent of any regulatory protein, and identified an in-built novel regulatory mechanism engaging its C-terminal region.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis , Endodeoxyribonucleases/metabolism , Endonucleases , Endoribonucleases/metabolism , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , DNA/chemistry , DNA Repair , DNA, Cruciform/genetics , Endonucleases/metabolism , Holliday Junction Resolvases/genetics , Holliday Junction Resolvases/metabolism
5.
Plants (Basel) ; 11(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35214874

ABSTRACT

Forest fragments are characteristic features of many megacities that have survived the urbanisation process and are often represented by unique assemblages of flora and fauna. Such woodlands are representations of nature in the city-often dominated by non-native and invasive species that coexist with resilient native congeners and purposefully introduced flora. These forest fragments also provide significant ecosystem services to urban society and therefore, understanding their compositional patterns is of considerable importance for conservation and management. In this work, we use a complex network approach to investigate species assemblages across six distinct urban forest fragments in the South Delhi Ridge area of the National Capital Territory, India. We generate bipartite ecological networks using conventional vegetation sampling datasets, followed by network partitioning to identify multiple cliques across the six forest fragments. Our results show that urban woodlands primarily form invasive-native associations, and that major invasive species, such as Prosopis juliflora and Lantana camara exclude each other while forming cliques. Our findings have implications for the conservation of these urban forests and highlight the importance of using network approaches in vegetation analysis.

6.
Front Plant Sci ; 12: 741965, 2021.
Article in English | MEDLINE | ID: mdl-34777423

ABSTRACT

Global warming exhibits profound effects on plant fitness and productivity. To withstand stress, plants sacrifice their growth and activate protective stress responses for ensuring survival. However, the switch between growth and stress is largely elusive. In the past decade, the role of the target of rapamycin (TOR) linking energy and stress signalling is emerging. Here, we have identified an important role of Glucose (Glc)-TOR signalling in plant adaptation to heat stress (HS). Glc via TOR governs the transcriptome reprogramming of a large number of genes involved in heat stress protection. Downstream to Glc-TOR, the E2Fa signalling module regulates the transcription of heat shock factors through direct recruitment of E2Fa onto their promoter regions. Also, Glc epigenetically regulates the transcription of core HS signalling genes in a TOR-dependent manner. TOR acts in concert with p300/CREB HISTONE ACETYLTRANSFERASE1 (HAC1) and dictates the epigenetic landscape of HS loci to regulate thermotolerance. Arabidopsis plants defective in TOR and HAC1 exhibited reduced thermotolerance with a decrease in the expression of core HS signalling genes. Together, our findings reveal a mechanistic framework in which Glc-TOR signalling through different modules integrates stress and energy signalling to regulate thermotolerance.

7.
Front Genet ; 12: 737194, 2021.
Article in English | MEDLINE | ID: mdl-34567086

ABSTRACT

The StAR-related lipid transfer (START) domain containing proteins or START proteins, encoded by a plant amplified family of evolutionary conserved genes, play important roles in lipid binding, transport, signaling, and modulation of transcriptional activity in the plant kingdom, but there is limited information on their evolution, duplication, and associated sub- or neo-functionalization. Here we perform a comprehensive investigation of this family across the rice pangenome, using 10 wild and cultivated varieties. Conservation of START domains across all 10 rice genomes suggests low dispensability and critical functional roles for this family, further supported by chromosomal mapping, duplication and domain structure patterns. Analysis of synteny highlights a preponderance of segmental and dispersed duplication among STARTs, while transcriptomic investigation of the main cultivated variety Oryza sativa var. japonica reveals sub-functionalization amongst genes family members in terms of preferential expression across various developmental stages and anatomical parts, such as flowering. Ka/Ks ratios confirmed strong negative/purifying selection on START family evolution, implying that ontogeny recapitulated selection pressures during rice domestication. Our findings provide evidence for high conservation of START genes across rice varieties in numbers, as well as in their stringent regulation of Ka/Ks ratio, and showed strong functional dependency of plants on START proteins for their growth and reproductive development. We believe that our findings advance the limited knowledge about plant START domain diversity and evolution, and pave the way for more detailed assessment of individual structural classes of START proteins among plants and their domain specific substrate preferences, to complement existing studies in animals and yeast.

8.
Front Plant Sci ; 12: 707286, 2021.
Article in English | MEDLINE | ID: mdl-34381483

ABSTRACT

Prions are often considered as molecular memory devices, generating reproducible memory of a conformational change. Prion-like proteins (PrLPs) have been widely demonstrated to be present in plants, but their role in plant stress and memory remains unexplored. In this work, we report the widespread presence of PrLPs in plants through a comprehensive meta-analysis of 39 genomes representing major taxonomic groups. We find diverse functional roles associated with these proteins in various species and term the full complement of PrLPs in a genome as its "prionome." In particular, we found the rice prionome being significantly enriched in transposons/retrotransposons (Ts/RTRs) and identified over 60 rice PrLPs that were differentially regulated in stress and developmental responses. This prompted us to explore whether and to what extent PrLPs may build stress memory. By integrating the available rice interactome, transcriptome, and regulome data sets, we could find links between stress and memory pathways that would not have otherwise been discernible. Regulatory inferences derived from the superimposition of these data sets revealed a complex network and cross talk between PrLPs, transcription factors (TFs), and the genes involved in stress priming. This integrative meta-analysis connects transient and transgenerational memory mechanisms in plants with PrLPs, suggesting that plant memory may rely upon protein-based signals in addition to chromatin-based epigenetic signals. Taken together, our work provides important insights into the anticipated role of prion-like candidates in stress and memory, paving the way for more focused studies for validating the role of the identified PrLPs in memory acclimation.

9.
Entropy (Basel) ; 23(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069833

ABSTRACT

A global event such as the COVID-19 crisis presents new, often unexpected responses that are fascinating to investigate from both scientific and social standpoints. Despite several documented similarities, the coronavirus pandemic is clearly distinct from the 1918 flu pandemic in terms of our exponentially increased, almost instantaneous ability to access/share information, offering an unprecedented opportunity to visualise rippling effects of global events across space and time. Personal devices provide "big data" on people's movement, the environment and economic trends, while access to the unprecedented flurry in scientific publications and media posts provides a measure of the response of the educated world to the crisis. Most bibliometric (co-authorship, co-citation, or bibliographic coupling) analyses ignore the time dimension, but COVID-19 has made it possible to perform a detailed temporal investigation into the pandemic. Here, we report a comprehensive network analysis based on more than 20,000 published documents on viral epidemics, authored by over 75,000 individuals from 140 nations in the past one year of the crisis. Unlike the 1918 flu pandemic, access to published data over the past two decades enabled a comparison of publishing trends between the ongoing COVID-19 pandemic and those of the 2003 SARS epidemic to study changes in thematic foci and societal pressures dictating research over the course of a crisis.

10.
J Bioinform Comput Biol ; 19(2): 2140001, 2021 04.
Article in English | MEDLINE | ID: mdl-33888032

ABSTRACT

The three helical Histone Fold Motif (HFM) of core histone proteins provides an evolutionarily favored site for the protein-DNA interface. Despite significant variation in sequence, the HFM retains a distinctive structural fold that has diversified into several non-histone protein families. In this work, we explore the ancestry of non-histone HFM containing families in the plant kingdom. A sequence search algorithm was developed using iterative profile Hidden Markov Models to identify remote homologs of core-histone proteins. The resulting hits were functionally annotated, classified into families, and subjected to comprehensive phylogenetic analyses via Maximum likelihood and Bayesian methods. We have identified 4390 HFM containing proteins in the plant kingdom that are not histones, mostly existing as diverse transcription factor families, distributed widely within and across taxonomic groups. Patterns of homology suggest that core histone subunit H2A has evolved into newer families like NF-YC and DRAP1, whereas the H2B subunit of core histones shares a common ancestry with NF-YB and DR1 class of TFs. Core histone subunits H3 and H4 were found to have evolved into DPE and TAF proteins, respectively. Taken together these results provide insights into diversification events during the evolution of the HFM, including sub-functionalization and neo-functionalization of the HFM.


Subject(s)
Histones , Plant Proteins , Bayes Theorem , Histones/genetics , Humans , Phylogeny , Plant Proteins/genetics
11.
Methods Mol Biol ; 2238: 325-338, 2021.
Article in English | MEDLINE | ID: mdl-33471342

ABSTRACT

Plant genomes can withstand small- and large-scale duplications, at a far greater success than any other kingdom in the tree of life, resulting in the existence and evolution of gene families, often with over a hundred members! The gene families, in turn, go through subfunctionalization or neofunctionalization, to form protein domains performing unique or grouped functions in context of the original activity. Due to the large number of such cases in the plant kingdom, it has become a routine task for plant biologists to investigate their specific gene family of interest. In this chapter, we provide a simple and standard pipeline for this effort, taking the example of steroidogenic acute regulatory protein (StAR) related lipid transfer (START) domains in rice, as reference. We describe the extraction, processing, and downstream analysis of Oryza sativa var. japonica proteome towards identification and comparative exploration of START domains. This was done by training profile Hidden Markov Models (HMM) of 35 reported START domains in Arabidopsis, which were then used to search potential homologs in rice. Downstream investigations included domain structure analysis, visualization of exon-intron patterns, chromosomal localization of START genes, and phylogenetic studies, followed by identification of cis-regulatory elements and gene regulatory network construction. Additionally, we have also highlighted various alternative tools and techniques that can be used to perform similar analyses, along with salient features.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant , Oryza/metabolism , Phosphoproteins/metabolism , Plant Proteins/metabolism , Proteome/analysis , Regulatory Sequences, Nucleic Acid , Gene Amplification , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/growth & development , Phosphoproteins/genetics , Phylogeny , Plant Proteins/genetics , Protein Domains
12.
Front Genet ; 11: 574549, 2020.
Article in English | MEDLINE | ID: mdl-33024442

ABSTRACT

The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.

13.
Funct Integr Genomics ; 20(1): 29-49, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31286320

ABSTRACT

Abiotic stress tolerance is a complex trait regulated by multiple genes and gene networks in plants. A range of abiotic stresses are known to limit rice productivity. Meta-transcriptomics has emerged as a powerful approach to decipher stress-associated molecular network in model crops. However, retaining specificity of gene expression in tolerant and susceptible genotypes during meta-transcriptome analysis is important for understanding genotype-dependent stress tolerance mechanisms. Addressing this aspect, we describe here "abiotic stress tolerant" (ASTR) genes and networks specifically and differentially expressing in tolerant rice genotypes in response to different abiotic stress conditions. We identified 6,956 ASTR genes, key hub regulatory genes, transcription factors, and functional modules having significant association with abiotic stress-related ontologies and cis-motifs. Out of the 6956 ASTR genes, 73 were co-located within the boundary of previously identified abiotic stress trait-related quantitative trait loci. Functional annotation of 14 uncharacterized ASTR genes is proposed using multiple computational methods. Around 65% of the top ASTR genes were found to be differentially expressed in at least one of the tolerant genotypes under different stress conditions (cold, salt, drought, or heat) from publicly available RNAseq data comparison. The candidate ASTR genes specifically associated with tolerance could be utilized for engineering rice and possibly other crops for broad-spectrum tolerance to abiotic stresses.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Oryza/genetics , Stress, Physiological/genetics , Cold Temperature , Droughts , Genotype , Hot Temperature , Quantitative Trait Loci , RNA-Seq , Salinity
14.
Plant Methods ; 14: 4, 2018.
Article in English | MEDLINE | ID: mdl-29339971

ABSTRACT

BACKGROUND: Terpenoid hydrocarbons represent the largest and most ancient group of phytochemicals, such that the entire chemical library of a plant is often referred to as its 'terpenome'. Besides having numerous pharmacological properties, terpenes contribute to the scent of the rose, the flavors of cinnamon and the yellow of sunflowers. Rapidly increasing -omics datasets provide an unprecedented opportunity for terpenome detection, paving the way for automated web resources dedicated to phytochemical predictions in genomic data. RESULTS: We have developed Terzyme, a predictive algorithm for identification, classification and assignment of broad substrate unit to terpene synthase (TPS) and prenyl transferase (PT) enzymes, known to generate the enormous structural and functional diversity of terpenoid compounds across the plant kingdom. Terzyme uses sequence information, plant taxonomy and machine learning methods for predicting TPSs and PTs in genome and proteome datasets. We demonstrate a significant enrichment of the currently identified terpenome by running Terzyme on more than 40 plants. CONCLUSIONS: Terzyme is the result of a rigorous analysis of evolutionary relationships between hundreds of characterized sequences of TPSs and PTs with known specificities, followed by analysis of genome-wide gene distribution patterns, ontology based clustering and optimization of various parameters for building accurate profile Hidden Markov Models. The predictive webserver and database is freely available at http://nipgr.res.in/terzyme.html and would serve as a useful tool for deciphering the species-specific phytochemical potential of plant genomes.

15.
Sci Rep ; 7(1): 14924, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097748

ABSTRACT

The KIX domain has emerged in the last two decades as a critical site of interaction for transcriptional assembly, regulation and gene expression. Discovered in 1994, this conserved, triple helical globular domain has been characterised in various coactivator proteins of yeast, mammals and plants, including the p300/CBP (a histone acetyl transferase), MED15 (a subunit of the mediator complex of RNA polymerase II), and RECQL5 helicases. In this work, we describe the first rigorous meta analysis of KIX domains across all forms of life, leading to the development of KIXBASE, a predictive web server and global repository for detection and analysis of KIX domains. To our knowledge, KIXBASE comprises the largest online collection of KIX sequences, enabling assessments at the level of both sequence and structure, incorporating PSIPRED and MUSTER at the backend for further annotation and quality assessment. In addition, KIXBASE provides useful information about critical aspects of KIX domains such as their intrinsic disorder, hydrophobicity profiles, functional classification and annotation based on domain architectures. KIXBASE represents a significant enrichment of the currently annotated KIX dataset, especially in the plant kingdom, thus highlighting potential targets for biochemical characterization. The KIX webserver and database are both freely available to the scientific community, at http://www.nipgr.res.in/kixbase/home.php .


Subject(s)
Mediator Complex/chemistry , Protein Domains , RecQ Helicases/chemistry , Software , p300-CBP Transcription Factors/chemistry , Amino Acid Sequence , Animals , Humans , Internet , Models, Molecular , Sequence Alignment
16.
Nucleic Acids Res ; 45(1): 255-270, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-27899637

ABSTRACT

Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures.


Subject(s)
Gene Expression Regulation, Fungal , Gene Regulatory Networks , Genome, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Cell Division , Computational Biology , Gene Dosage , Gene Expression Profiling , Genes, Lethal , Genetic Fitness , Mutation , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
17.
Sci Rep ; 5: 12806, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26259924

ABSTRACT

Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes.


Subject(s)
Cicer/genetics , Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Chromosome Mapping , Genotype , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Phylogeny , Polymorphism, Single Nucleotide
19.
Database (Oxford) ; 2014: bau120, 2014.
Article in English | MEDLINE | ID: mdl-25534749

ABSTRACT

Plant essential oils are complex mixtures of volatile organic compounds, which play indispensable roles in the environment, for the plant itself, as well as for humans. The potential biological information stored in essential oil composition data can provide an insight into the silent language of plants, and the roles of these chemical emissions in defense, communication and pollinator attraction. In order to decipher volatile profile patterns from a global perspective, we have developed the ESSential OIL DataBase (EssOilDB), a continually updated, freely available electronic database designed to provide knowledge resource for plant essential oils, that enables one to address a multitude of queries on volatile profiles of native, invasive, normal or stressed plants, across taxonomic clades, geographical locations and several other biotic and abiotic influences. To our knowledge, EssOilDB is the only database in the public domain providing an opportunity for context based scientific research on volatile patterns in plants. EssOilDB presently contains 123 041 essential oil records spanning a century of published reports on volatile profiles, with data from 92 plant taxonomic families, spread across diverse geographical locations all over the globe. We hope that this huge repository of VOCs will facilitate unraveling of the true significance of volatiles in plants, along with creating potential avenues for industrial applications of essential oils. We also illustrate the use of this database in terpene biology and show how EssOilDB can be used to complement data from computational genomics to gain insights into the diversity and variability of terpenoids in the plant kingdom. EssOilDB would serve as a valuable information resource, for students and researchers in plant biology, in the design and discovery of new odor profiles, as well as for entrepreneurs--the potential for generating consumer specific scents being one of the most attractive and interesting topics in the cosmetic industry. Database URL: http://nipgr.res.in/Essoildb/


Subject(s)
Databases, Factual , Oils, Volatile/metabolism , Plants/metabolism , Terpenes/metabolism , Plants/genetics , Stress, Physiological , Terpenes/analysis
20.
BMC Plant Biol ; 14: 315, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25518738

ABSTRACT

BACKGROUND: Availability of the draft nuclear genome sequences of small-seeded desi-type legume crop Cicer arietinum has provided an opportunity for investigating unique chickpea genomic features and evaluation of their biological significance. The increasing number of legume genome sequences also presents a challenge for developing reliable and information-driven bioinformatics applications suitable for comparative exploration of this important class of crop plants. RESULTS: The Chickpea Genomic Web Resource (CGWR) is an implementation of a suite of web-based applications dedicated to chickpea genome visualization and comparative analysis, based on next generation sequencing and assembly of Cicer arietinum desi-type genotype ICC4958. CGWR has been designed and configured for mapping, scanning and browsing the significant chickpea genomic features in view of the important existing and potential roles played by the various legume genome projects in mutant mapping and cloning. It also enables comparative informatics of ICC4958 DNA sequence analysis with other wild and cultivated genotypes of chickpea, various other leguminous species as well as several non-leguminous model plants, to enable investigations into evolutionary processes that shape legume genomes. CONCLUSIONS: CGWR is an online database offering a comprehensive visual and functional genomic analysis of the chickpea genome, along with customized maps and gene-clustering options. It is also the only plant based web resource supporting display and analysis of nucleosome positioning patterns in the genome. The usefulness of CGWR has been demonstrated with discoveries of biological significance made using this server. The CGWR is compatible with all available operating systems and browsers, and is available freely under the open source license at http://www.nipgr.res.in/CGWR/home.php.


Subject(s)
Cicer/genetics , Computational Biology/instrumentation , Genome, Plant , Internet , Plant Proteins/genetics , Cell Nucleus/genetics , Chromosome Mapping , Fabaceae/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...