Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Biol Res Nurs ; 26(2): 219-230, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37830211

ABSTRACT

BACKGROUND: Alterations in the naturally occurring bacteria of the gut, known as the gastrointestinal (GI) microbiome, may influence GI symptoms in women with breast cancer. OBJECTIVE: This work aims to describe GI symptom occurrence, duration, severity, and distress and measures of the GI microbiome among women with breast cancer receiving chemotherapy compared to age- and sex-matched healthy controls. INTERVENTIONS/METHODS: 22 women with breast cancer receiving chemotherapy and 17 healthy control women provided stool specimens and GI symptom data using the modified Memorial Symptom Assessment Scale (MSAS). The fecal microbiome was profiled by metagenomic sequencing of 16S Ribosomal RNA (rRNA). GI microbiome was compared between groups using alpha-diversity (Observed OTU number and Shannon index), beta-diversity (UniFrac distances), and relative abundance of select genera. RESULTS: GI symptoms with high symptom reports among breast cancer patients included nausea, diarrhea, flatulence, dry mouth, taste change, and poor appetite. Indices of differential abundance (beta diversity) significantly distinguished between breast cancer patients and healthy controls. Unique bacterial features differentiating the 2 groups were Prevotella_9, Akkermansia, Lachnospira, Lachnospiraceae_NK4A136, Lachnoclostridium, and Oscillibacter. CONCLUSIONS: Gut bacteria are associated with GI inflammation and mucus degradation, suggesting the potential role of the GI microbiome in GI symptom burden. Understanding the influence of GI bacteria on gut health and symptoms will help harness the enormous potential of the GI microbiome as a future diagnostic and therapeutic agent to reduce the symptom burden associated with chemotherapy.


Subject(s)
Breast Neoplasms , Gastrointestinal Microbiome , Humans , Female , Gastrointestinal Microbiome/genetics , Breast Neoplasms/drug therapy , Symptom Burden , Gastrointestinal Tract/microbiology , Feces/microbiology , Bacteria/genetics
2.
Sci Rep ; 13(1): 526, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631533

ABSTRACT

As geographical location can impact the gut microbiome, it is important to study region-specific microbiome signatures of various diseases. Therefore, we profiled the gut microbiome of breast cancer (BC) patients of the Midwestern region of the United States. The bacterial component of the gut microbiome was profiled utilizing 16S ribosomal RNA sequencing. Additionally, a gene pathway analysis was performed to assess the functional capabilities of the bacterial microbiome. Alpha diversity was not significantly different between BC and healthy controls (HC), however beta diversity revealed distinct clustering between the two groups at the species and genera level. Wilcoxon Rank Sum test revealed modulation of several gut bacteria in BC specifically reduced abundance of those linked with beneficial effects such as Faecalibacterium prausnitzii. Machine learning analysis confirmed the significance of several of the modulated bacteria found by the univariate analysis. The functional analysis showed a decreased abundance of SCFA (propionate) production in BC compared to HC. In conclusion, we observed gut dysbiosis in BC with the depletion of SCFA-producing gut bacteria suggesting their role in the pathobiology of breast cancer. Mechanistic understanding of gut bacterial dysbiosis in breast cancer could lead to refined prevention and treatment.


Subject(s)
Breast Neoplasms , Gastrointestinal Microbiome , Humans , United States/epidemiology , Female , Dysbiosis/microbiology , Bacteria/genetics , Fatty Acids, Volatile , Gastrointestinal Microbiome/genetics , Feces/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis
3.
Int Rev Neurobiol ; 167: 185-215, 2022.
Article in English | MEDLINE | ID: mdl-36427955

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS that affects around one million people in the United States. Predisposition or protection from this disease is linked with both genetic and environmental factors. In recent years, gut microbiome has emerged as an important environmental factor in the pathobiology of MS. The gut microbiome supports various physiologic functions, including the development and maintenance of the host immune system, the perturbation of which is known as dysbiosis and has been linked with multiple diseases including MS. We and others have shown that people with MS (PwMS) have gut dysbiosis that is characterized by specific gut bacteria being enriched or depleted. Consequently, there is an emphasis on determining the mechanism(s) through which gut bacteria and/or their metabolites alter the course of MS through their ability to provide protection, predispose individuals, or promote disease progression. Improving our understanding of these mechanisms will allow us to harness the enormous potential of the gut microbiome as a diagnostic and/or therapeutic agent. In this chapter, we will discuss current advances in microbiome research in the context of MS, including a review of specific bacteria that are currently linked with this disease, potential mechanisms of disease pathogenesis, and the utility of microbiome-based therapy for PwMS.


Subject(s)
Gastrointestinal Microbiome , Multiple Sclerosis , Humans , Gastrointestinal Microbiome/physiology , Dysbiosis , Multiple Sclerosis/etiology , Multiple Sclerosis/therapy , Bacteria , Disease Progression
4.
PLoS One ; 17(4): e0264556, 2022.
Article in English | MEDLINE | ID: mdl-35472144

ABSTRACT

Trillions of microbes such as bacteria, fungi, and viruses exist in the healthy human gut microbiome. Although gut bacterial dysbiosis has been extensively studied in multiple sclerosis (MS), the significance of the fungal microbiome (mycobiome) is an understudied and neglected part of the intestinal microbiome in MS. The aim of this study was to characterize the gut mycobiome of patients with relapsing-remitting multiple sclerosis (RRMS), compare it to healthy controls, and examine its association with changes in the bacterial microbiome. We characterized and compared the mycobiome of 20 RRMS patients and 33 healthy controls (HC) using Internal Transcribed Spacer 2 (ITS2) and compared mycobiome interactions with the bacterial microbiome using 16S rRNA sequencing. Our results demonstrate an altered mycobiome in RRMS patients compared with HC. RRMS patients showed an increased abundance of Basidiomycota and decreased Ascomycota at the phylum level with an increased abundance of Candida and Epicoccum genera along with a decreased abundance of Saccharomyces compared to HC. We also observed an increased ITS2/16S ratio, altered fungal and bacterial associations, and altered fungal functional profiles in MS patients compared to HC. This study demonstrates that RRMS patients had a distinct mycobiome with associated changes in the bacterial microbiome compared to HC. There is an increased fungal to bacterial ratio as well as more diverse fungal-bacterial interactions in RRMS patients compared to HC. Our study is the first step towards future studies in delineating the mechanisms through which the fungal microbiome can influence MS disease.


Subject(s)
Ascomycota , Multiple Sclerosis , Mycobiome , Ascomycota/genetics , Bacteria/genetics , Dysbiosis/microbiology , Fungi/genetics , Humans , Mycobiome/genetics , RNA, Ribosomal, 16S/genetics
5.
Indian J Rheumatol ; 16(1): 57-72, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34531642

ABSTRACT

Trillions of commensal bacteria colonizing humans (microbiome) have emerged as essential player(s) in human health. The alteration of the same has been linked with diseases including autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis. Gut bacteria are separated from the host through a physical barrier such as skin or gut epithelial lining. However, the perturbation in the healthy bacterial community (gut dysbiosis) can compromise gut barrier integrity, resulting in translocation of bacterial contents across the epithelial barrier (leaky gut). Bacterial contents such as lipopolysaccharide and bacterial antigens can induce a systemic inflammatory environment through activation and induction of immune cells. The biggest question in the field is whether inflammation causes gut dysbiosis or dysbiosis leads to disease induction or propagation, i.e., it is inside out or outside in or both. In this review, we first discuss the microbiome profiling studies in various autoimmune disorders, followed by a discussion of potential mechanisms through which microbiome is involved in the pathobiology of diseases. A better understanding of the role of the microbiome in health and disease will help us harness the power of commensal bacteria for the development of novel therapeutic agents to treat autoimmune disorders.

6.
BMC Cancer ; 21(1): 808, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34256732

ABSTRACT

BACKGROUND: Though the gut microbiome has been associated with efficacy of immunotherapy (ICI) in certain cancers, similar findings have not been identified for microbiomes from other body sites and their correlation to treatment response and immune related adverse events (irAEs) in lung cancer (LC) patients receiving ICIs. METHODS: We designed a prospective cohort study conducted from 2018 to 2020 at a single-center academic institution to assess for correlations between the microbiome in various body sites with treatment response and development of irAEs in LC patients treated with ICIs. Patients must have had measurable disease, ECOG 0-2, and good organ function to be included. Data was collected for analysis from January 2019 to October 2020. Patients with histopathologically confirmed, advanced/metastatic LC planned to undergo immunotherapy-based treatment were enrolled between September 2018 and June 2019. Nasal, buccal and gut microbiome samples were obtained prior to initiation of immunotherapy +/- chemotherapy, at development of adverse events (irAEs), and at improvement of irAEs to grade 1 or less. RESULTS: Thirty-seven patients were enrolled, and 34 patients were evaluable for this report. 32 healthy controls (HC) from the same geographic region were included to compare baseline gut microbiota. Compared to HC, LC gut microbiota exhibited significantly lower α-diversity. The gut microbiome of patients who did not suffer irAEs were found to have relative enrichment of Bifidobacterium (p = 0.001) and Desulfovibrio (p = 0.0002). Responders to combined chemoimmunotherapy exhibited increased Clostridiales (p = 0.018) but reduced Rikenellaceae (p = 0.016). In responders to chemoimmunotherapy we also observed enrichment of Finegoldia in nasal microbiome, and increased Megasphaera but reduced Actinobacillus in buccal samples. Longitudinal samples exhibited a trend of α-diversity and certain microbial changes during the development and resolution of irAEs. CONCLUSIONS: This pilot study identifies significant differences in the gut microbiome between HC and LC patients, and their correlation to treatment response and irAEs in LC. In addition, it suggests potential predictive utility in nasal and buccal microbiomes, warranting further validation with a larger cohort and mechanistic dissection using preclinical models. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03688347 . Retrospectively registered 09/28/2018.


Subject(s)
Gastrointestinal Microbiome/physiology , Immunotherapy/methods , Lung Neoplasms/drug therapy , Female , Humans , Male , Pilot Projects , Prospective Studies
7.
Hum Immunol ; 74(5): 640-7, 2013 May.
Article in English | MEDLINE | ID: mdl-23391568

ABSTRACT

Elderly cancer patients are often excluded from immune-based clinical trials and therapies based on the belief that they respond poorly to tumor antigens. Using melanoma as a model and melanoma related Mart-127-35 epitope specific T cell receptor (TCR) engineered T cells as a tool we compared the T cell responses from young and elderly to the Mart-127-35 epitope, ex vivo. We also compared the natural Treg (nTreg) activities and the expression of a number of genes associated with immune response by quantitative real-time reverse Transcription Polymerase Chain Reaction (qRTPCR) in formalin fixed primary melanomas, in situ. We detected a significant difference in CD8(+) T cell response to Flu antigen (influenza matrix peptide Flu MP58-66), but the responses of the two cohorts to melanoma antigen were comparable. nTreg activities in the elderly was significantly compromised. The qPCR analyses of tissues from elderly patients revealed lower levels of Fox-P3 expression but comparable levels of expression of IL-2, IFNγ, TNFα, IL-4, IL-10, IDO, and TGFß. These findings indicate that elderly patients might be capable of responding to tumor antigens, and need not be excluded from immune-based therapies or clinical trials.


Subject(s)
Melanoma-Specific Antigens/immunology , Melanoma/immunology , T-Lymphocytes/immunology , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Cells, Cultured , Coculture Techniques , Cohort Studies , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epitopes, T-Lymphocyte/immunology , Flow Cytometry , Gene Expression/immunology , Humans , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , MART-1 Antigen/genetics , MART-1 Antigen/immunology , MART-1 Antigen/metabolism , Melanoma/metabolism , Middle Aged , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
8.
Hum Mutat ; 32(6): 579-89, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21120950

ABSTRACT

Deficiency of carbamoyl phosphate synthetase I (CPSI) results in hyperammonemia ranging from neonatally lethal to environmentally induced adult-onset disease. Over 24 years, analysis of tissue and DNA samples from 205 unrelated individuals diagnosed with CPSI deficiency (CPSID) detected 192 unique CPS1 gene changes, of which 130 are reported here for the first time. Pooled with the already reported mutations, they constitute a total of 222 changes, including 136 missense, 15 nonsense, 50 changes of other types resulting in enzyme truncation, and 21 other changes causing in-frame alterations. Only ∼10% of the mutations recur in unrelated families, predominantly affecting CpG dinucleotides, further complicating the diagnosis because of the "private" nature of such mutations. Missense changes are unevenly distributed along the gene, highlighting the existence of CPSI regions having greater functional importance than other regions. We exploit the crystal structure of the CPSI allosteric domain to rationalize the effects of mutations affecting it. Comparative modeling is used to create a structural model for the remainder of the enzyme. Missense changes are found to directly correlate, respectively, with the one-residue evolutionary importance and inversely correlate with solvent accessibility of the mutated residue. This is the first large-scale report of CPS1 mutations spanning a wide variety of molecular defects highlighting important regions in this protein.


Subject(s)
Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamoyl-Phosphate Synthase I Deficiency Disease/diagnosis , Carbamoyl-Phosphate Synthase I Deficiency Disease/genetics , Hyperammonemia/genetics , Carbamoyl-Phosphate Synthase (Ammonia)/chemistry , Codon, Nonsense/genetics , DNA Mutational Analysis , Humans , INDEL Mutation/genetics , Models, Chemical , Mutation, Missense/genetics , Protein Conformation , Protein Isoforms/genetics
9.
Mol Genet Metab ; 81 Suppl 1: S12-9, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15050969

ABSTRACT

Carbamyl phosphate synthetase I (CPSI) determines the rate-limiting entry of free ammonia into the urea cycle. Disruption of CPSI affects the liver's ability to remove waste nitrogen and produce arginine, citrulline, and urea. Arginine is the necessary precursor for the critical biomolecule, nitric oxide (NO). We have studied the classic model of CPSI deficiency, which results in severe hyperammonemia, and identified a large number of molecular defects. A number of CPSI polymorphisms have been found that appear to result in functional consequences. We have examined the association of these polymorphisms with various environmental stress conditions and found that certain CPSI alleles are associated with clinical outcome. We refer to these associations as environmentally determined genetic expression (EDGE) affects. In addition to studies of classic CPSI deficiency, we have developed data for the EDGE concept in post-cardiac surgery-related pulmonary hypertension, hepatic veno-occlusive disease after bone marrow transplantation, and persistent pulmonary hypertension of the newborn. We have linked these outcomes and genotypes to the availability of the urea cycle intermediates, citrulline and arginine, and their role in NO synthesis. We hypothesize that these polymorphisms affect the functional efficiency of CPSI and thus the entire urea cycle and as such, the availability of the NO substrates. By piecing together the various functional aspects of the urea cycle changes we have seen, we can better understand the clinical vulnerabilities of patients in environmentally stressful situations. This knowledge should allow us to design intervention strategies to either predict or modify the associated adverse outcomes.


Subject(s)
Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Gene Expression , Genetic Variation , Bone Marrow Transplantation , Carbamoyl-Phosphate Synthase (Ammonia)/deficiency , Carbamoyl-Phosphate Synthase I Deficiency Disease/genetics , Chi-Square Distribution , Genotype , Humans , Hypertension, Pulmonary/diagnosis , Infant, Newborn , Models, Biological , Mutation , Nitric Oxide/metabolism
10.
Cancer Epidemiol Biomarkers Prev ; 13(2): 205-12, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14973098

ABSTRACT

Individuals with the major hemochromatosis (HFE) allele C282Y and iron overload develop hepatocellular and some extrahepatic malignancies at increased rates. No association has been previously reported between the C282Y allele and breast cancer. We hypothesized that due to the pro-oxidant properties of iron, altered iron metabolism in C282Y carriers may promote breast carcinogenesis. Because 1 in 10 Caucasians of Northern European ancestry carries this allele, any impact it may have on breast cancer burden is potentially great. We determined C282Y genotypes in 168 patients who underwent high-dose chemotherapy and blood cell transplantation for cancer: 41 with breast cancer and 127 with predominantly hematological cancers (transplant cohort). Demographic, clinical, and tumor characteristics were reviewed in breast cancer patients. The frequency of C282Y genotypes in breast cancers was compared with the frequency in nonbreast cancers, an outpatient sample from Tennessee (n = 169), and a published United States national sample. The frequency of at least one C282Y allele in breast cancers was higher (36.6%, 5 homozygotes/10 heterozygotes) than frequencies in Tennessee (12.7%, P < 0.001), the general population (12.4%, P < 0.001), and similarly selected nonbreast cancers (17.0%, P = 0.008). The likelihood of breast cancer in the transplant cohort increased with C282Y allele dose (P(trend) = 0.010). These results were supported by the finding in a nontransplant cohort of a higher frequency of C282Y mutations in Caucasian (18.4%, P = 0.039) and African-American (8.5%, P = 0.005) women with breast cancer than race-specific national frequency estimates. A high prevalence of C282Y alleles in women with breast cancer with and without poor risk features suggests that altered iron metabolism in C282Y carriers may promote the development of breast cancer and/or more aggressive forms of the disease.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/physiopathology , Cell Transformation, Neoplastic , Hemochromatosis/genetics , Iron/metabolism , Adult , Alleles , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/therapy , Case-Control Studies , Female , Genotype , Humans , Middle Aged , Peripheral Blood Stem Cell Transplantation , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...