Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 33(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37862367

ABSTRACT

Pattern formation is a central process that helps to understand the individuals' organizations according to different environmental conditions. This paper investigates a nonlocal spatiotemporal behavior of a prey-predator model with the Allee effect in the prey population and hunting cooperation in the predator population. The nonlocal interaction is considered in the intra-specific prey competition, and we find the analytical conditions for Turing and Hopf bifurcations for local and nonlocal models and the spatial-Hopf bifurcation for the nonlocal model. Different comparisons have been made between the local and nonlocal models through extensive numerical investigation to study the impact of nonlocal interaction. In particular, a legitimate range of nonlocal interaction coefficients causes the occurrence of spatial-Hopf bifurcation, which is the emergence of periodic patterns in both time and space from homogeneous periodic solutions. With an increase in the range of nonlocal interaction, the whole Turing pattern suppresses after a certain threshold, and no pure Turing pattern exists for such cases. Specifically, at low diffusion rates for the predators, nonlocal interaction in the prey population leads to the extinction of predators. As the diffusion rate of predators increases, impulsive wave solutions emerge in both prey and predator populations in a one-dimensional spatial domain. This study also includes the effect of nonlocal interaction on the invasion of populations in a two-dimensional spatial domain, and the nonlocal model produces a patchy structure behind the invasion where the local model predicts only the homogeneous structure for such cases.


Subject(s)
Ecosystem , Models, Biological , Humans , Animals , Computer Simulation , Predatory Behavior , Population Dynamics
2.
Trop Med Infect Dis ; 5(2)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466438

ABSTRACT

While risk of tuberculosis (TB) is high among household contacts (HHCs) of pre-extensively drug resistant (pre-XDR) TB and XDR-TB, data on yield of systematic longitudinal screening are lacking. We aim to describe the yield of systematic longitudinal TB contact tracing among HHCs of patients with pre-XDR-TB and XDR-TB. At the Médecins Sans Frontières (MSF) clinic, Mumbai, India a cohort comprising 518 HHCs of 109 pre-XDR and XDR index cases was enrolled between January 2016 and June 2018. Regular HHC follow-ups were done till one year post treatment of index cases. Of 518 HHCs, 23 had TB (21 on TB treatment and two newly diagnosed) at the time of first visit. Of the rest, 19% HHCs had no follow-ups. Fourteen (3.5%) TB cases were identified among 400 HHCs; incidence rate: 2072/100,000 person-years (95% CI: 1227-3499). The overall yield of household contact tracing was 3% (16/518). Of 14 who were diagnosed with TB during follow-up, six had drug susceptible TB (DSTB); six had pre-XDR-TB and one had XDR-TB. Five of fourteen cases had resistance patterns concordant with their index case. In view of the high incidence of TB among HHCs of pre-XDR and XDR-TB cases, follow-up of HHCs for at least the duration of index cases' treatment should be considered.

3.
Nano Lett ; 16(10): 6099-6108, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27669096

ABSTRACT

The emerging field of RNA nanotechnology has been used to design well-programmed, self-assembled nanostructures for applications in chemistry, biology, and medicine. At the forefront of its utility in cancer is the unrestricted ability to self-assemble multiple siRNAs within a single nanostructure formulation for the RNAi screening of a wide range of oncogenes while potentiating the gene therapy of malignant tumors. In our RNAi nanotechnology approach, V- and Y-shape RNA templates were designed and constructed for the self-assembly of discrete, higher-ordered siRNA nanostructures targeting the oncogenic glucose regulated chaperones. The GRP78-targeting siRNAs self-assembled into genetically encoded spheres, triangles, squares, pentagons and hexagons of discrete sizes and shapes according to TEM imaging. Furthermore, gel electrophoresis, thermal denaturation, and CD spectroscopy validated the prerequisite siRNA hybrids for their RNAi application. In a 24 sample siRNA screen conducted within the AN3CA endometrial cancer cells known to overexpress oncogenic GRP78 activity, the self-assembled siRNAs targeting multiple sites of GRP78 expression demonstrated more potent and long-lasting anticancer activity relative to their linear controls. Extending the scope of our RNAi screening approach, the self-assembled siRNA hybrids (5 nM) targeting of GRP-75, 78, and 94 resulted in significant (50-95%) knockdown of the glucose regulated chaperones, which led to synergistic effects in tumor cell cycle arrest (50-80%) and death (50-60%) within endometrial (AN3CA), cervical (HeLa), and breast (MDA-MB-231) cancer cell lines. Interestingly, a nontumorigenic lung (MRC5) cell line displaying normal glucose regulated chaperone levels was found to tolerate siRNA treatment and demonstrated less toxicity (5-20%) relative to the cancer cells that were found to be addicted to glucose regulated chaperones. These remarkable self-assembled siRNA nanostructures may thus encompass a new class of potent siRNAs that may be useful in screening important oncogene targets while improving siRNA therapeutic efficacy and specificity in cancer.

4.
Free Radic Biol Med ; 77: 291-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25261226

ABSTRACT

One-electron oxidation of acetohydroxamic acid (aceto-HX) initially gives rise to nitroxyl (HNO), which can be further oxidized to nitric oxide (NO) or react with potential biological targets such as thiols and metallo-proteins. The distinction between the effects of NO and HNO in vivo is masked by the reversible redox exchange between the two congeners and by the Janus-faced behavior of NO and HNO. The present study examines the ability of aceto-HX to serve as an HNO donor or an NO donor when added to Escherichia coli and Bacillus subtilis subjected to oxidative stress by comparing its effects to those of NO and commonly used NO and HNO donors. The results demonstrate that: (i) the effects of NO and HNO on the viability of prokaryotes exposed to H2O2 depend on the type of the bacterial cell; (ii) NO synergistically enhances H2O2-induced killing of E. coli, but protects B. subtilis depending on the extent of cell killing by H2O2; (iii) the HNO donor Angeli׳s salt alone has no effect on the viability of the cells; (iv) Angeli׳s salt synergistically enhances H2O2-induced killing of B. subtilis, but not of E. coli; (v) aceto-HX alone (1-4 mM) has no effect on the viability of the cells; (vi) aceto-HX enhances the killing of both cells induced by H2O2 and metmyoglobin, which may be attributed in the case of B. subtilis to the formation of HNO and to further oxidation of HNO to NO in the case of E. coli; (vii) the synergistic activity of aceto-HX on the killing of both cells induced by H2O2 alone does not involve reactive nitrogen species. The effect of aceto-HX on prokaryotes under oxidative stress is opposite to that of other hydroxamic acids on mammalian cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Escherichia coli/drug effects , Hydroxamic Acids/pharmacology , Nitric Oxide/pharmacology , Oxidative Stress , Bacillus subtilis/metabolism , Drug Synergism , Escherichia coli/metabolism , Hydrogen Peroxide/pharmacology , Microbial Sensitivity Tests , Nitrites/pharmacology
5.
Free Radic Biol Med ; 67: 248-54, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24140438

ABSTRACT

NO plays diverse roles in physiological and pathological processes, occasionally resulting in opposing effects, particularly in cells subjected to oxidative stress. NO mostly protects eukaryotes against oxidative injury, but was demonstrated to kill prokaryotes synergistically with H2O2. This could be a promising therapeutic avenue. However, recent conflicting findings were reported describing dramatic protective activity of NO. The previous studies of NO effects on prokaryotes applied a transient oxidative stress while arbitrarily checking the residual bacterial viability after 30 or 60min and ignoring the process kinetics. If NO-induced synergy and the oxidative stress are time-dependent, the elucidation of the cell killing kinetics is essential, particularly for survival curves exhibiting a "shoulder" sometimes reflecting sublethal damage as in the linear-quadratic survival models. We studied the kinetics of NO synergic effects on H2O2-induced killing of microbial pathogens. A synergic pro-oxidative activity toward gram-negative and gram-positive cells is demonstrated even at sub-µM/min flux of NO. For certain strains, the synergic effect progressively increased with the duration of cell exposure, and the linear-quadratic survival model best fit the observed survival data. In contrast to the failure of SOD to affect the bactericidal process, nitroxide SOD mimics abrogated the pro-oxidative synergy of NO/H2O2. These cell-permeative antioxidants, which hardly react with diamagnetic species and react neither with NO nor with H2O2, can detoxify redox-active transition metals and catalytically remove intracellular superoxide and nitrogen-derived reactive species such as (•)NO2 or peroxynitrite. The possible mechanism underlying the bactericidal NO synergy under oxidative stress and the potential therapeutic gain are discussed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Hydrogen Peroxide/pharmacology , Models, Statistical , Nitric Oxide/pharmacology , Oxidants/pharmacology , Actinomyces viscosus/drug effects , Actinomyces viscosus/growth & development , Actinomyces viscosus/metabolism , Aggregatibacter actinomycetemcomitans/drug effects , Aggregatibacter actinomycetemcomitans/growth & development , Aggregatibacter actinomycetemcomitans/metabolism , Cyclic N-Oxides/pharmacology , Drug Synergism , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/metabolism , Microbial Viability/drug effects , Nitroprusside/pharmacology , Streptococcus/drug effects , Streptococcus/growth & development , Streptococcus/metabolism , Superoxide Dismutase/pharmacology
6.
Bioorg Med Chem Lett ; 23(18): 5086-90, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23932791

ABSTRACT

The synthesis and characterization of a new class of DNA binding molecule exhibiting potent and selective anti-leukemic activity is described. The synthesis of an aminoacyl nucleolipid was developed from an efficient EEDQ coupling strategy, in which a series of seven bioconjugates were synthesized in yields of 53-78%. Guanosine bioconjugate 7, was used as building block for the synthesis of a target aminoacyl nucleolipid 14. Its GRP78 DNA binding affinity was confirmed by gel shift assay, CD spectroscopy, Tm measurements and dynamic light scattering experiments. Moreover, in a single dose (10 µM) screen against a panel of 60 cancer cell lines, aminoacyl nucleolipid 14 was found to selectively trigger greater than 90% cell death in a SR human leukemia cancer cell line. The reported aminoacyl nucleolipid represents a useful model for a new class of DNA binding molecules for the development of potent and selective anti-cancer agents.


Subject(s)
Amino Acids/pharmacology , Antineoplastic Agents/pharmacology , DNA/drug effects , Lipids/pharmacology , Amino Acids/chemical synthesis , Amino Acids/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Endoplasmic Reticulum Chaperone BiP , Humans , Lipids/chemical synthesis , Lipids/chemistry , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...